

Master Studiengang Petroleum Engineering

> Modulhandbuch August 2017

Inhaltsverzeichnis

Common compulsory subjects of all areas of study	
Module 1: Communication Skills	
Module 2: Advanced Reservoir Mechanics	
Module 3: Advanced Production and Well Planning	
Module 11: Project Management	
Module 13: Group Project	
Module 14: M.Sc. Thesis + Presentation	
Compulsory subjects of Reservoir Management area of study	13
Module 4: Data Acquisition and Evaluation	14
Module 5: Reservoir Modeling and Simulation	16
Module 6: Enhanced Hydrocarbon Recovery	
Module 10 a: Economics and Law	
Module 12: Seminar	21
Compulsory subjects of Drilling & Production area of study	
Module 7: Advanced Drilling and Completion	
Module 8: Directional Drilling and Logging	
Module 9: Production	27
Module 10 b: Management, Economics and Law	
Module 12: Seminar	
Compulsory subjects of Deep Geothermal Systems area of study	
Module 4: Data Acquisition and Evaluation	
Module 7: Advanced Drilling and Completion	
Module 10 a: Economics and Law	
Module 12: Seminar	
Module 12. Seminal	
Compulsory optional subjects of Reservoir Management area of study	40
Module 15.1: Petrophysics	42
Module 15.2: Geostatistics	
Module 15.3: Rock Physics	
Module 15.4: Geoinformation Systems	
Module 16.1: Data Interpretation	
Module 16.2: Model Validation	
Module 16.3: Reservoir Modeling	
Module 17.1: Natural Gas Recovery	
Module 17.2: Natural Gas Storage	
Module 18.1: Energy Law	
Module 18.2: Health, Safety and Environmental Management	
Compulsory optional subjects of Drilling & Production area of study	
Module 19.1: Energy Law	
Module 19.2: Materials Engineering	
Module 19.3: Fluid Mechanics	
Module 19.4: Offshore Production and Structures	
Module 19.5: Numerical Reservoir Simulation	
Module 19.6: Natural Gas Storage	
Module 19.7: Geological Modeling	
Module 19.8: Applied Well Test Analysis	
Module 19.9: Enhanced Oil Recovery	
Module 19.10: Geoinformation Systems	66
Compulsory optional subjects of Deep Geothermal Systems area of study	
Module 20.1: Energy Law	
Module 20.2: Fluid Mechanics	
Module 20.3: Numerical Reservoir Simulation	
Module 20.4: Geological Modeling	
Module 20.5: Hydrogeology for the Geothermal Energy Production	
Module 20.6: Geothermal Geology	
Module 20.7: Fossil & Renewable Energy	
Module 20.8: Health, Safety and Environmental Management	
Module 20.9: Geoinformation Systems	76

Common compulsory subjects of all areas of study

Module 1: Communication Skills

Desire Bressien	
Degree Programme:	Petroleum Engineering (M.Sc.)
Module number:	1
Name of the module:	Communication Skills
Courses:	Interpersonal Skills
	Technical Writing
Term:	1-2
Person responsible for the	Prof. Oppelt
module:	
Lecturers:	Prof. Kraus, Mrs. Schulze-Bentrop
Language:	English
Course type:	Compulsory subjects (PF) of the Reservoir Management, Drilling & Production
	and Deep Geothermal Systems areas of study

Courses	HPW	Workload [h] Contact hours/Self-	СР	FK	MK S	Skills SK	зок
S 6111 Interpersonal Skills	2V	study 28/62	3	0	20	40	40
W 9009 Technical Writing	2Ü	28/32	2	25	25	25	25
Total	2V+2Ü	56/94	5	15	25	30	30

Prerequisites for	No special prerequisites.
attending:	· · · · · · · · · · · · · · · · · · ·
Learning objectives / Skills:	Strengthening and improvement of the academic and professional writing skills and ability of interpersonal communication/ Ability of students to write scientific and technical reports and to present results as well as to work in international interdisciplinary teams will be developed
Course outline:	 Interpersonal Skills: Understanding yourself Building Trust: Emotional Intelligence at Work Developing Successful Interactions: Empowerment and the Involvement of Others, Conflict Management, Team Facilitation Skills Creating Learning Conversations: Providing Effective Performance Feedback, Listening and Diversity Issues
	 <u>Technical Writing:</u> Various writing exercises Working with authentic written texts, which will improve writing style, coherency, vocabulary, and grammar.
Course assignments/ form	Partial examination.
of examination:	Interpersonal Skills: Report and Presentation/ Written (90 min) or oral exam (30-40 min). At least 50% of maximal score is required to pass the written exam. Technical Writing:
	Homework Assignments/ Term paper The module grade is evaluated as average grade from the both partial grades weighted by the credit point number.
Media:	 Powerpoint, White Board, Flipchart Hard copy of lecture notes to be provided at the beginning of the course A soft pdf copy of PowerPoint presentation slides to be provided on the Stud.IP directory of the course
Literature:	 Lecture notes Authentic text materials Training assignments
Additional information:	Participants are requested to register for the attendance with the course directory at the Stud.IP

Module 2: Advanced Reservoir Mechanics

Degree Programme:	Petroleum Engineering
Module number:	2
Name of the module:	Advanced Reservoir Mechanics
Courses:	Thermodynamics and Phase Behavior of Hydrocarbons
	Rock Mechanics II
Term:	1
Person responsible for the	Prof. Leonhard Ganzer
module:	
Lecturers:	Prof. Ganzer, Prof. Hou
Language:	English
Course type	Compulsory subjects (PF) of the Reservoir Management, Drilling & Production
	and Deep Geothermal Systems areas of study

		Workload [h]		Skills			
Courses	HPW	Contact hours/Self-study	СР	FK	MK	SK	SOK
W 6104 Thermodynamics and Phase Behavior of Hydrocarbons	2V+1Ü	42/108	5	60	40		
W 6234 Rock Mechanics II	2V+1Ü	42/108	5	60	40		
Total	4V+2Ü	84/216	10	60	40		

Prerequisites for attending:	No special prerequisites
Learning objectives / Skills:	Ability to apply mass conservation and transfer laws as well as mathematical methods to describe phase behavior of hydrocarbons and mechanical behavior of reservoir rocks for solution of reservoir engineering problems should be developed/ Students will become capable to acquire and evaluate physical properties of reservoir fluids and rocks needed for reservoir characterization and simulation and will develop a professional expertise in the application methods for solution of real reservoir engineering problems
Course outline:	Thermodynamics and Phase Behavior of Hydrocarbons Basic Thermodynamics Physical Properties of Real Gases / Gaseous Systems Physical Properties of Liquid Systems Chemistry and Properties of Organic Components Two Phase Systems; Numerical Treatment of Real Systems Chemistry of Brines, Equilibria with Water Phases Interfacial Energy Rock Mechanics II Poroelastic theory Borehole stability Sand production prediction Reservoir engineering applications
Course assignments/ form of examination:	Homework Assignments, Reports and presentation/ Partial examination. Written (90 min) or oral exam (30-40 min) for each discipline. At least 50% of maximal score is required to pass the written exam. The module grade is evaluated as average grade from the both partial grades weighted by the credit points number.
Media:	 Multimedia lecturing tools PowerPoint presentation software and white board Hard copy of lecture notes to be provided at the beginning of the course A soft pdf copy of PowerPoint presentation available with the Stud.IP course directory Video records of lectures available with the Stud.IP course directory
Literature:	<u>Thermodynamics and Phase Behavior of Hydrocarbons</u> 1. McCain, W. D.: Properties of Petroleum Fluids, PennWell Publishing, 1990 2. Whitson, C.H, Brule, M. H. Phase behavoir, SPE Monograph, vol. 20, 2000 3. Ahmed T.: Equationsof state and PVT Analysis. Gulf Professional Publishing, 2007 4. Ahmed, T.: Reservoir Engineering Handbook, Golf Professional Publishing, 2001

	 <u>Rock Mechanics II</u> 1. Fjaer, E. et al. (1992): Petroleum related rock mechanics. Elsevier, Amsterdam. 2. Charlez, P.A. (1991): Rock Mechanics, Vol. 1 - Theoretical Fundamentals. Editions Technip, Paris. 3. Charlez, P.A. (1997): Rock Mechanics, Vol. 2 – Petroleum Applications. Editions Technip, Paris. 4. Xuan Luo & Zhengmeng Hou (2016) Automated Wellbore Stability Systems: Determination of In-situ Stresses Using Logging Data. Oil Gas European Magazine, 1/2016:20-23. Hou, 5. Z. & Zhou, L.: Numerical Investigation and Optimization of Multiple Fractures in Tight Gas Reservoirs. Oil Gas European Magazine 39 (3), 2013:129-135. 6. Zhou, L.; Hou, Z.; Gou, Y. & Li, M.T.: Numerical investigation of a low-efficient hydraulic fracturing operation in a tight gas reservoir in the North German Basin. Journal of Petroleum Science and Engineering 120(2014), August 2014:119-129, DOI:10.1016/j.petrol.2014.06.001 7. Hou, Z.; Gou, Y.; Taron, J.; Gorke, U.J. & Kolditz, O.: Thermo-hydromechanical modeling of carbon dioxide injection for enhanced gas-recovery (CO2-EGR): A benchmarking study for code comparison. Environmental Earth Sciences 67(2), 2012:549–561, DOI: 10.1007/s12665-012-1703-2.
Additional information:	Participants are requested to register for the attendance with the course directory at the Stud.IP

Module 3: Advanced Production and Well Planning

Degree Programme:	Petroleum Engineering (M.Sc.)
Module number:	3
Name of the module:	Advanced Production and Well Planning
Courses:	Advanced Production
	Well Planning
Term:	1
Person responsible for the	Prof. Oppelt
module:	
Lecturers:	DrIng. Perozo Baptista, Dr. Jürgen Schamp
Language:	English
Course type:	Compulsory subjects (PF) of the Reservoir Management, Drilling & Production
	and Deep Geothermal Systems areas of study

		Workload [h]		ç	Skills		
Courses	HPW	Contact hours/Self-study	СР	FK	MK	SK	SOK
W 6131 Advanced Production	2V+1Ü	42/108	5	60	40	0	0
W 6105 Well Planning	2V+1Ü	42/108	5	50	30	20	0
Total	4V+2Ü	84/216	10	55	35	10	0

Prerequisites for attending:	No special prerequisites				
Learning objectives / Skills:	Advanced Production:				
	Acquisition of profound knowledge in production engineering and development the				
	ability to apply it to handle practical engineering issues like improvement of				
	productivity and dimensioning of sub-surface and surface production facilities.				
	/Students will became able to theoretically grasp and to practically handle sub-				
	surface and surface petroleum production systems				
	<u>Well Planning</u>				
	Acquisition of profound knowledge in drilling engineering and the ability to apply it				
	to the well planning/ Skills of well planning based on the profound knowledge and				
Course outline:	ability to meet requirements and options Advanced Production:				
Course outline.					
	 Introduction to integrated production systems Review of reservoir inflow characterization and modeling tools 				
	 Review of reservoir innow characterization and modeling tools Review of multiphase flow modeling in wellbores, risers and flowlines 				
	Choke valves				
	Surface facilities				
	Review of production optimization techniques				
	Diagnosis of systems performance Diagnosis of systems performance				
	Production allocation				
	Linking the reservoir, the near-wellbore, the wellbore and the surface facilities				
	 Planning short-, medium- and long-term optimization of field management 				
	Well Planning				
	Fundamentals of Well Planning				
	Trajectory Planning				
	 Casing and Drillstring Design 				
	Cementing				
	• BOP				
	Examples and Case Studies				
Course assignments/ form	Partial examination. Written (90 min) or oral exam (30-40 min) for each discipline.				
of examination:	At least 50% of maximal score is required to pass the written exam.				
	The module grade is evaluated as average grade from the partial grades weighted				
	by the credit point number.				
Media:	Multimedia lecturing tools				
	 PowerPoint presentation software and white board 				
	 Hard copy of lecture notes to be provided at the beginning of the course 				
	A soft pdf copy of PowerPoint presentation available with the Stud.IP course				
	directory				

	 Video records of lectures available with the Stud.IP course directory
Literature:	 <u>Advanced Production:</u> Allen, T.O. and Roberts, A.P.: Production Operations. OGCI, Tulsa, 1993. Brill, J.B., Mukherjee H.: Multiphase Flow in Wells. SPE Monograph 17, 1999. Cholet, H., (ed.): Well Production Practical Handbook. Editions TECHNIP, 2000 Economides, M.J., Hill, A.D. and Ehlig-Economides, C.: Petroleum Production Systems. Prentice Hall Petroleum Engineering Series, 2012. Ikoku, C.U.: Natural Gas Engineering. Pennwell Books, 1980 Katz, D.L., et al.: Handbook of Natural Gas Engineering. Mc Graw Hill Book Company, 1959. Reinicke, K.M., Hueni, G., Liermann, N., Oppelt J., Reichetseder, P., Unverhaun, W.: Oil and Gas – Ullmann's Encyclopedia of Industrial Chemistry - Wiley Online Library, Wiley 2014. Well Planning Aadnoy, B.S.: Modern Well Design. Rotterdam, Balkema Publications, 2010. Lyons, W.C. (Edit.): Standard Handbook of Petroleum and Natural Gas Engineering Vol. 1 and 2. Butterworth-Heinemann, 1996. Mitchell, R. F., Miska, S. Z.: Fundamentals of Drilling Engineering. SPE book series, 2010. Economides, M. J., Watters L. T., Dunn-Norman, S.: Petroleum Well Construction. John Wiley & Sons, 1998
Additional information:	Participants are requested to register for the attendance with the course directory at the Stud.IP

Module 11: Project Management

Degree Programme:	Petroleum Engineering (M.Sc.)
Module number:	11
Name of the module:	Project Management
Courses:	Integrated Project Management and Development
Term:	3
Person responsible for the	Prof. Oppelt
module:	
Lecturers:	Prof. Reinicke
Language:	English
Course type:	Compulsory subjects (PF) of the Reservoir Management, Drilling & Production
	and Deep Geothermal Systems areas of study

		Workload [h]	Skills				
Courses	HPW	Contact hours/Self-study	СР	FK	MK	SK	SOK
W6117 Integrated							
Project Management	4V	56/124	6	60	40	0	0
and Development							

Prerequisites for attending:	No special requirements
Learning objectives / Skills:	MSc candidates should develop the ability to carry out integrated project development studies/ Skills in the application of modern techniques of engineering, systematic and creative methods of working in an international and interdisciplinary environment will be developed and established at an advanced level.
Course outline:	 System analysis: linking the reservoir, the near-wellbore, the wellbore and the surface facilities Planning short-, medium and long-term optimisation of field management Fundamentals of integrated project management Economics (Discounted Cash Flow, Elements, Indicators, Use) Data (e.g. for Development Studies: Geophysical, Geological, Well, Test, Performance Data) Data acquisition, QCing and integration (G&G, petrophysical, reservoir, well and surface facilities data) Running production forecasts and estimating reserves Case studies
	 Application of supporting Software
Course assignments/ form	Module exam. Written (90 min) or oral exam (30-40 min). At least 50% of maximal
of examination:	score is required to pass the written exam.
Media:	 Multimedia lecturing tools PowerPoint presentation software and white board Hard copy of lecture notes to be provided at the beginning of the course A soft pdf copy of PowerPoint presentation with the Stud.IP directory. Video records of lectures are available with the Stud.IP course directory
Literature:	 Satter, A. und Thakur, G.: Integrated Petroleum Reservoir Management - A Team Approach. Pennwell Publishing Company, Tulsa, Oklahoma 1994 SPE Reprint Series No. 48: Reservoir Management. 1998 Edition, SPE Richardson, Texas Ahmed, A., and N. Meehan: Advanced Reservoir Management and Engineering. Gulf Professional Publishing, November 2011 Economides, M.J., Hill, A.D. and Ehlig-Economides, C.: Petroleum Production Systems. Prentice Hall Petroleum Engineering Series, 1994. Reinicke, K. M., Hueni, Greg, Liermann, N., Oppelt, J., Reichetseder, P., and Unverhaun, W.: Oil and Gas. Ullmann's Ecyclopedia of Industrial Chemistry, Online, Wiley VCH, 2013
Additional information:	Participants are requested to register for the attendance with the course directory at the Stud.IP

Module 13: Group Project

Degree Programme:	Petroleum Engineering (M.Sc.)
Module number:	13
Name of the module:	Group Project
Courses:	Group Project
Term:	3
Person responsible for the	Prof. Ganzer
module:	
Lecturers:	Prof. Ganzer (responsible for the RM area of study), Prof. Oppelt (responsible for
	the DP area of study), Designated faculty and research staff members
	(concomitant)
Language:	English
Course type:	Compulsory subjects (PF) of the Reservoir Management, Drilling & Production
	and Deep Geothermal Systems areas of study

		Workload [h]		Skills			
Courses	HPW	Contact hours/Self-study	СР	FK	MK	SK	SOK
W 6171 Group Project	6Ü	84/276	12	25	25	25	25

Prerequisites for	For the RM area of study at least 47 CP to achieve in the Modules 1, 2, 3, 4, 5,
attending:	and 10a.
3	For the DP area of study at least 48 CP to achieve in the Modules 1, 2, 3, 7, 8, 9
	and 10b.
	For the DG area of study at least 51 CP to achieve in the Modules 1, 2, 3, 4, 7,
	10a, 21
	Admission requirements must be completed.
Learning objectives /	Consolidation of the acquired knowledge and preparation for common operational
Skills:	procedures of the petroleum industry by means of application of the acquired
	advanced knowledge to development of a solution of a real problem of the
	petroleum industry to be performed as interdisciplinary team work. /Advanced
	professional expertise in the field of petroleum engineering will be established through the application of modern techniques of engineering, systematic and
	creative methods of working in an international and interdisciplinary environment.
Course outline:	Preparation of an integrated field development plan on the basis of real/realistic
Course outline.	field data, spanning - if possible:
	• the planning cycle from seismic surveying to reservoir description and
	characterization,
	• reserves evaluation,
	• production forecasting,
	• evaluations of health, safety and environmental impact,
	• well planning,
	• field development,
	• IOR, production,
	marketing and economic evaluations
Course assignments/ form	Group project report + Presentation/ The overall grade of the group project is
of examination:	evaluated as weighted average affected by 40% of the report grade, 40 % of the
	presentation grade and 20 % of the team work grade.
Media:	 3 hard copies of the group project report (to submit to the group project
	coordinator in due time)
	 MS PowerPoint presentation
	 Data CD containing soft (pdf) copies of the group project report and the
	presentation to submit to the group project coordinator at the project end.
Literature:	• ITE Guidelines on the preparation of technical reports and principles of scientific
	writing.
	• Technical reports on the group project subjects supplied by the group project
	sponsors.
	• Special literature related to the group project issues should be collected from the
	open sources by the group project teams.Additional data required for the project work should be identified and acquired in
	• Additional data required for the project work should be identified and acquired in cooperation with the group project sponsors and coordinators by the group
	project team
Additional information:	Participants are requested to register for the attendance with the course directory
	at the Stud.IP

Module 14: M.Sc. Thesis + Presentation

Degree Programme:	Petroleum Engineering (M.Sc.)
Module number:	14
Name of the module:	M.Sc. Thesis + Colloquium
Courses:	M.Sc. Thesis + Colloquium
Term:	4
Person responsible for the	Prof. Ganzer
module:	
Lecturers:	Prof. Ganzer (responsible for the RM area of study), Prof, Oppelt (responsible for
	the DP area of study), Designated faculty and scientific staff members
	(concomitant)
Language:	English
Course:	Compulsory subjects (PF) of the Reservoir Management, Drilling & Production
	and Deep Geothermal Systems of study

		Workload [h]		Skills			
Courses	HPW	Contact hours/Self-study	СР	FK	MK	SK	SOK
Master Thesis	16 Ab	40/800	28	70	15	15	0

Prerequisites for	More than 80 CP must be collected and all the admission requirements
attending:	completed.
Learning objectives / Skills:	The MSc candidates should acquire profound professional knowledge in the field of petroleum engineering and be able to resolve complex engineering problems by using of common scientific methods of petroleum engineering/ The MSc candidates have to develop skills to present and to defend the results of their studies.
Course outline:	A problem assigned for the MSc thesis must be suited to proof the individual's ability to address a practical problem independently and in depth within of a regular time of 5 Months
Course assignments/ form of examination:	Individual assignment to an engineering or scientific problem in the field of petroleum engineering and elaboration of master thesis/ The MSc candidate must present and defend the master thesis in colloquium in presence of at least one of two designated examiners. The overall MSc thesis grade is to evaluate as weighted average affected by 90 % of the written thesis grade and 10 % of the presentation and discussion grade.
Media:	 3 hard copies of the master thesis (to be submitted to the exam office not later than 1 week prior to the colloquium) MS PowerPoint presentation Data CD containing soft (pdf) copies of the master thesis and the presentation
Literature:	Assessment of relevant literature sources should be carried out by the MSc candidate as part of the master thesis
Additional information:	The MSc candidates are asked to agree the appointment for the colloquium with the secretary office in advance.

Compulsory subjects of Reservoir Management area of study

Module 4: Data Acquisition and Evaluation

Degree Programme:	Petroleum Engineering
Module number:	4
Name of the module:	Data Acquisition and Evaluation
Courses:	Applied Well Test Analysis
	Well Logging II
Term:	2
Person responsible for the	Prof. Ganzer
module:	
Lecturers:	Prof. Ostrowski, Prof. Weller
Language:	English
Course type:	Compulsory subjects (PF) of the Reservoir Management area of study

		Workload [h]			Skil	ls	
Courses	HPW	Contact hours/Self-study	СР	FK	MK	SK	SOK
S 6109 Applied Well Test Analysis	2V+1Ü	42/108	5	60	40		
S 4023 Well Logging II	2V+1Ü	42/108	5	60	40		
Total	4V+2Ü	84/216	10	60	40		

Prerequisites for	No special prerequisites
attending:	
Learning objectives / Skills:	The MSc candidates should acquire the knowledge in the origination, validation, interpretation and uncertainty of engineering and geo-scientific data as well as the ability to handle, to interpolate and to extrapolate it/ Students develop skills to acquire and to evaluate data required for reservoir characterization and simulation studies.
Course outline:	Applied Well Test Analysis
	Objectives of Well Testing
	Downhole and Surface Equipment
	Well Test Principles, Reservoir Models, Inner & Outer Boundary Conditions
	Single Well Test Analysis: Drawdown, Build-Up (DST) Pulse Test, Minifrac
	 Testing, Layered Reservoir, Vertical Interference and Horizontal Well Test Multiple Well Test Analyses: Interference Test, Pulse Interference Test; Gas
	Well Test Analysis Interpretation Methodology.
	Well Logging II (cased hole logging)
	• Introduction
	Radiometric methods
	Acoustic methods
	Electrical methods
Course assignments/ form	Partial examination. Written (90 min) or oral exam (30-40 min) for each discipline.
of examination:	At least 50% of maximal score number is required to pass the written exam. The
	module grade is evaluated as average grade from the both partial grades
Media:	weighted by the credit points number.
	Multimedia lecturing tools Devertoriate procentation contruction and white board
	 PowerPoint presentation software and white board Hard copy of lecture notes to be provided at the beginning of the course
	 A soft pdf copy of PowerPoint presentation with the Stud.IP directory
	 Computer aided exercises by using professional well test analysis and
	interpretation software
Literature:	Applied Well Test Analysis
	1. Slider, H. C.: A Simplified Method of Pressure Buildup Analysis for a Stabilized
	Well, Trans., AIME, 1971
	2. Earlougher R. C.: Advances in Well Test Analysis, Monograph Series, SPE,
	Dallas 1977
	 Horner, D. R.: Pressure Analysis Methods, Reprint Series, SPE, Dallas 1967 Lee, J.: Well Testing, SPE of AIME, New York 1982
	5. Matthews, C. S. & Russel, D. G.: Pressure Buildup and Flow Tests in Wells,
	Monograph Series, SPE, Dallas 1967
	Well Logging II
	1. Ellis, D.E.: Well Logging for Earth Scientists, Elsevier, 1987
	2. Fricke, S.; Schön, J.: Praktische Bohrlochgeophysik, Enke, 1999
Additional information:	Participants are requested to register for the attendance with the course directory

at the Stud.IP

Module 5: Reservoir Modeling and Simulation

Degree Programme:	Petroleum Engineering
Module number:	5
Name of the module:	Reservoir Modelling and Simulation
Courses:	Geological Modeling
	Numerical Reservoir Simulation
Term:	1-2
Person responsible for the	Prof. Ganzer
module:	
Lecturers:	Prof. Groß, DiplIng. Schatzmann, Prof. Ganzer, Prof. Bremeier,
Language:	English
Course type:	Compulsory subjects (PF) of the Reservoir Management area of study

		Workload [h]		Skills			
Courses	HPW	Contact hours/Self-study	СР	FK	MK	SK	SOK
W 4820 Geological Modeling	2V+1Û	42/108	5	50	30	20	
S 6102 Numerical Reservoir Simulation	2V+1Ü	42/108	5	50	30	20	
Total	4V+2Ü	84/216	10	50	30	20	

Prerequisites for attending:	No special prerequisites
Learning objectives / Skills:	Acquisition of advanced knowledge in the field of setting up of geological and dynamic reservoir simulation models, evaluation of model uncertainties, calibration of flow models, evaluation of forecasting accuracy. / Ability of setting up and evaluate geological and dynamic reservoir simulation models as well as to approach the professional solution of real reservoir modelling and simulation problems on advanced methodical and systematical way.
Course outline:	 <u>Geological Modelling:</u> a) Theoretical part: Interpretation and basics to reconstruct deposition areas (depositional systems and facies models) with regards to set up 3D geological models: Principles of generation of 3-D geological models Sedimentary facies Facial model Facial sequences and stratigraphy, Sedimentary structures, Well logging and facies Depositional environments: Terrestrial environments; Fluvial systems Marginal marines: Deltaic systems Example cases relevant to the petroleum geology b) Practical part: Introduction to Petrel software package (well correlation, static geological model)
	 Numerical Reservoir Simulation: History and classification of reservoir simulators Review of fluid properties for simulation Rock properties and saturation functions General purpose formulation and discretization methods used for black-oil and EOS compositional simulators Gridding - structured and unstructured gridding approaches, Cartesian, corner point and Voronoi grids Modelling structural elements in simulation Representing wells in the reservoir simulation model Compositional reservoir simulation Simulation of fractured reservoirs Upgridding and upscaling History matching
Course assignments/ form of examination:	Continuous assessment and report, Project work/ Partial examination. Written (90 min) or oral exam (30-40 min). The mark of the course Geological Modelling consists of a) theoretical part -> final exam (written) and b) practical part -> continuous assessment and report.

	The module grade is evaluated as average grade from the both partial grades
	weighted by the credit points number.
Media:	Multimedia lecturing tools
	 PowerPoint presentation software and white board
	Computer aided exercises using the application of the commercial reservoir
	modeling software PETREL (Schlumberger), Matlab and CMG
	 Hard copy of lecture notes to be provided at the beginning of the course.
	• A soft pdf copy of PowerPoint presentation slides to be provided on the Stud.IP
	directory of the course.
	Video records of lectures is available with the course directory on the Stud.IP
Literature:	Geological Modelling:
	1. Magoon, L.B., Dow, W.G.: The Petroleum System. In: Magoon, L.B., Dow, W.G.
	(eds.) The Petroleum System – from Source to Trap, AAPG Memoir 60, 1994.
	2. Nicols, G: Sedimentology and Stratigraphy, 2nd Edition, Wiley-Blackwell, 2009.
	3. Slatt, G.: Stratigraphic Reservoir Characterization for Petroleum Geologists,
	Geophysicists, and Engineers, Volume 61, 2nd Edition, Elsevier, 2013.
	Numerical Reservoir Simulation:
	Aziz, K., Settari, A.: Petroleum Reservoir Simulation, Elsevier Applied Science
	Publishers, 1979.
	2. Mattax, C.C., Dalton, R.L.: Reservoir Simulation, SPE Monograph Vol. 13,
	1989. 2. Ertekin T. Abou Kasson, King C. B.: Pasis Applied Passawair Simulation
	3. Ertekin, T., Abou-Kassem, King, G. R.: Basic Applied Reservoir Simulation, SPE Textbook Vol. 7, 2001.
Additional information:	
Additional information:	Participants are requested to register for the attendance with the course directory at the Stud.IP

Module 6: Enhanced Hydrocarbon Recovery

Degree Programme:	Petroleum Engineering
Module number:	6
Name of the module:	Enhanced Hydrocarbon Recovery
Courses:	Enhanced Oil Recovery
Term:	3
Person responsible for the	Prof. Ganzer
module:	
Lecturers:	Prof. Ganzer
Language:	English
Course type:	Compulsory subjects (PF) of the Reservoir Management area of study

		Workload [h]		Skills			
Courses	HPW	Contact hours/Self-study	СР	FK	MK	SK	SOK
W 6103 Enhanced Oil Recovery	2V+1Ü	42/108	5	60	40		

Prerequisites for attending:	No special prerequisites
Learning objectives / Skills:	Acquisition of advanced knowledge in the analysis and computation methods of the processes and mechanisms of the oil recovery, production and storage/ Skills in the application of the fundamentals of material and phase behavior of hydrocarbons will be consolidated and established on an advanced level
Course outline:	 Basics of Waterflooding; Chemical Flooding; Gas Flooding; Steam Flooding; Well Treatment
Course assignments/ form of examination:	Module exam. Written (90 min) or oral exam (30-40 min). At least 50% of maximal score is required to pass the written exam.
Media:	 Multimedia lecturing tools PowerPoint presentation software and white board Hard copy of lecture notes to be provided at the beginning of the course A soft pdf copy of PowerPoint presentation with the Stud.IP directory Computer aided exercises by using professional software
Literature:	 Lake, L.W.: "Enhanced Oil Recovery", SPE, 2010 Green, D.W. & Willhite, G.P.: "Enhanced Oil Recovery", SPE Textbook Series, 1998. Sheng, J.J.: "Modern Chemical Enhanced Oil Recovery", Elsevier, 2011. Van Pollen, H. K.: "Fundamentals of Enhanced Oil Recovery", Penn Well Publishing Company, Oklahoma, 1980 M. Latil: "Enhanced Oil Recovery", Gulf Publishing Company, 1980. Dowed, T.: "Improved Oil Recovery", Interstate Oil Compact Commission, Oklahoma city, Oklahoma, (1983).
Additional information:	Participants are requested to register for the attendance with the course directory at the Stud.IP

Module 10 a: Economics and Law

Degree Programme:	Petroleum Engineering (M.Sc.)
Module number:	10 a
Name of the module:	Management, Economics and Law
Courses:	Energy Law I
	Planning and Budgeting
Term:	2-3
Person responsible for the	Prof. Oppelt
module:	
Lecturers:	Prof. Wolkewitz, Dr. Schäfer
Language:	English
Course type:	Compulsory subjects (PF) of the Reservoir Management area of study

		Workload [h] Skills			ls		
Courses	HPW	Contact hours/Self-study	СР	FK	MK	SK	SOK
S 6168 Energy Law I	1V	14/46	2	60	40	0	0
W 6114 Planning and	2V	28/62	3	60	40	0	0
Budgeting	20	28/62	3	60	40	0	0
Total	3V	42/108	5	60	40	0	0

Prerequisites for	No special prerequisites
attending:	
Learning objectives / Skills:	Acquisition of knowledge of basics of public law and methods of business administration related to oil and gas activities including the main elements of the legal framework, planning tools and decision models / Students develop skills to understand and apply the elements of legal framework, planning tools and decision models
Course outline:	 Energy Law I: Public law as basis for oil and gas activities – a general introduction Typical legal systems for upstream oil and gas activities such as Licences/Concessions, Production Sharing Agreements and Service Contracts Fiscal regimes for oil and gas activities Environmental law The legal framework of mid- and downstream oil and gas activities Planning and Budgeting Basic Concepts and Definitions On Planning Vertical (Value Chain), Horizontal and Mixed Types of Business Types of Investment Evaluation of Prospects and Investments Search for and Screening of Investment Opportunities Establishing an Investment Portfolio From Portfolio to Budget Proposals The Capital Budget and Realization Strategic Investment Plan Follow-up and Controlling
0	
Course assignments/ form of examination:	Partial examination. Written (90 min) or oral exam (30-40 min) for each discipline. At least 50% of maximal score is required to pass the written exam. The module grade is evaluated as average grade from the both partial grades weighted by the credit points number.
Media:	 Multimedia lecturing tools PowerPoint presentation software and white board Hard copy of lecture notes to be provided at the beginning of the course A soft pdf copy of PowerPoint presentation available with the Stud.IP course directory Video records of lectures available with the Stud.IP course directory
Literature:	 <u>Energy Law I</u> 1. Corino, Carsten, Energy Law in Germany and its Foundations in International and European Law, Munich 2003 2. Kühne, Gunther, The new West German mining law, in: 19 Land and Water Law Review 1984, pp. 371-394 3. Respective texts of relevant laws and related documents that are provided in

	the Stud.IP 4. <u>Scripts on selected topics that are provided in the Stud.IP</u>
	 <u>Planning and Budgeting</u> Newendorp, P. D., Schuler, J. R.: Decision Analysis for Petroleum Exploration; 2nd edition. Planning Press, Tulsa, 2000. Megill, R. E.: An Introduction to Exploration Economics. Pennwell Corp, Tulsa, 1988 Mian, M.A.: Project Economics and Decision Analysis. Pennwell Corp, Tulsa, 2011
Additional information:	Participants are requested to register for the attendance with the course directory at the Stud.IP

Module 12: Seminar

Degree Programme:	Petroleum Engineering (M.Sc.)
Module number:	12
Name of the module:	Seminar
Courses:	Advanced Reservoir Topics
Term:	2
Person responsible for the	Prof. Ganzer
module:	
Lecturers:	All faculty and scientific staff members in the field of reservoir engineering
Language:	English
Course type:	Compulsory (PF) subjects of the Reservoir Management area of study

		Workload [h]		5	Skills		
Courses	HPW	Contact hours/Self-study	СР	FK	MK	SK	SOK
S 6101 Advanced Reservoir Topics	2S	28/92	4	30	30	10	30

Prerequisites for attending:	No special requirements
Learning objectives / Skills:	Development the ability to apply theoretical knowledge and state-of-the-art methods and technology for the individual problem solving in the field of petroleum engineering/ Strengthening of skills to report and to present results to an audience of peers
Course outline:	Students work on assigned special topics, report and present results obtained via individual efforts within of a regular time of 6-7 weeks.
Course assignments/ form of examination:	Soft (pdf) copies of the seminar report, poster and presentation to be uploaded to the Stud.IP seminar directory in due time/ Seminar report, poster, presentation to an audience of peers, faculty and scientific staff members and discussion. The overall seminar grade is evaluated as weighted average affected by 40% of the report grade, 40 % of the presentation grade, 10 % of the poster grade and 10% of the moderation grade.
Media:	 DIN A3 Poster to be posted at a pin-board MS PowerPoint presentation White board
Literature:	Key literature sources should be provided by the supervisor. Assessment of further relevant literature sources should be carried out by the candidate as part of seminar study
Additional information:	Participants are requested to register for the attendance with the seminar directory at the Stud.IP

Compulsory subjects of Drilling & Production area of study

Module 7: Advanced Drilling and Completion

Degree Programme:	Petroleum Engineering (M.Sc.)			
Module number:	7			
Name of the module:	Advanced Drilling and Completion			
Courses:	Advanced Drilling Technology			
	Completion and Workover			
Term:	1-2			
Person responsible for the	Prof. Oppelt			
module:				
Lecturers:	Prof. Thonhauser, Dr. Prohaska, Prof. Teodoriu, Dr. Bello			
Language:	English			
Course type:	Compulsory subjects (PF) of the Drilling&Production area of study			

		Workload [h]			Ski	lls	
Courses	HPW	Contact hours/Self-study	СР	FK	MK	SK	SOK
W 6122 Advanced Drilling Technology	2V+1Ü	42/108	5	60	40	0	0
S 6121 Completion and Workover	2V+1Ü	42/108	5	60	40	0	0
Total	4V+2Ü	84/216	10	60	40	0	0

Prerequisites for	No special prerequisites				
attending:	No special prerequisites				
Learning objectives /	 Acquisition of profound knowledge in drilling engineering and the ability to apply 				
Skills:	it in the field of wellbore planning. Comprehension of advanced modern drilling				
OKIIIS.	technologies as well as merits and risks of special drilling technology to develop				
	petroleum reservoirs efficiently				
	Acquisition of special knowledge in the drilling, workover and completion				
	technology to meet requirements of wellbore deliverability, safety and				
	integrity /Skills of well planning based on the profound knowledge and ability to				
	meet requirements and options will be extended to the advanced level and				
	consolidated				
Course outline:	Advanced Drilling Technology:				
	Drilling concepts				
	Well design procedure				
	Drilling optimization				
	Drilling performance analysis				
	Drillstring dynamics				
	Drilling problems				
	HP/HT wells, horizontal and extended reach wells, multilaterals				
	Under balanced drilling				
	New developments in drilling operations				
	Offshore drilling				
	Blow out				
	Case studies				
	Completion and Workover:				
	Completion objectives (definition, considerations, types)				
	Mechanical aspects of well testing				
	Completion fluids and perforation				
	Tubing string design				
	Packer and downhole tools				
	Flow control				
	Data acquisition & inteligent completion				
	Workover objectives & workover operations				
	Workover objectives a workover operations Workover rigs & tools				
	Workover equipment (wire line, snubbing unit, coiled tubing)				
	Completion & workover design & execution				
Course assignments/ form	Partial examination. Written (90 min) or oral exam (30-40 min) for each discipline.				
of examination:	At least 50% of maximal score is required to pass the written exam.				
er examination.	The module grade is evaluated as average grade from the both partial grades				
	weighted by the Credit point number.				
Media:	Multimedia lecturing tools				
	 PowerPoint presentation software and white board 				

	 Hard copy of lecture notes to be provided at the beginning of the course
	 A soft pdf copy of PowerPoint presentation available with the Stud.IP course
	directory
	 Video records of lectures available with the Stud.IP course directory
Literature:	Advanced Drilling Technology:
	1. Aadnoy, B.S.: Modern Well Design. Rotterdam, Balkema Publications, 2010.
	2. Aadnoy, B. S., Cooper, J., Miska, S. Z., Mitchell, R. F., Payne, M. L.: Advanced
	Drilling and Well Technology. SPE, 2009.
	3. Azar, J. J., Robello Samuel, G.: Drilling Engineering. PennWell Corp., 2007
	4. Baker, R.: A primer oilwell drilling. Publ.: Petroleum Extension Service. Univ. of
	Texas at Austin, Sixth Edition, Austin, Texas, 2001
	5. Drilling_Engineering Workbook- A Distributed Learning Course. 80270H Rev.
	B. Baker_Hughes_INTEQ, Dec. 1995.
	6. Economides, M. J., Watters L. T., Dunn-Norman, S.: Petroleum Well
	Construction, John Wiley & Sons, 1998
	7. IADC Drilling Manual, eBook Version (V.11), International Association of
	Drilling Contractors, 2000.
	8. Lyons, W.C. (Edit.): Standard Handbook of Petroleum and Natural Gas
	Engineering Vol. 1 and 2. Butterworth-Heinemann, 1996.
	9. Mitchell, R. F., Miska, S. Z.: Fundamentals of Drilling Engineering. SPE book
	series, 2010.
	10. Rabia, H.: Well engineering and construction. Entrac Consulting, 2001.
	Completion and Workover:
	1. Aadnoy, B.S.: Modern Well Design. Rotterdam, Balkema Publications, 2010.
	2. Perrin, D.: Well completion and servicing - Oil and gas field development
	techniques, Édition Technip, 1999.
	3. Adams, N.: Workover Well Control. PennWell Books, 1981
	4. Bourgoyne A. T., Millheim, K. K., Chenevert, M.E., Young, F. S.: Applied
	Drilling Engineering, SPE Textbook Series Vol. 2, 1986.
	5. Hill, A. D., Ding Zhu, Economides, M. J.: Multilateral Wells. SPE, 2008
Sonstiges:	Participants are requested to register for the attendance with the course directory
.	at the Stud.IP

Module 8: Directional Drilling and Logging

Degree Programme:	Petroleum Engineering (M.Sc.)
Module number:	8
Name of the module:	Directional Drilling and Logging
Courses:	Directional Drilling
	Well Logging II
Term:	2
Person responsible for the	Prof. Oppelt
module:	
Lecturers:	Prof. Oppelt, Prof. Weller
Language:	English
Course type:	Compulsory subjects (PF) of the Drilling&Production area of study

		Workload [h]			Ski	lls	
Courses	HPW	Contact hours/Self-study	СР	FK	MK	SK	SOK
S 6125 Directional Drilling	2V	28/92	4	60	40	0	0
S 4023 Well Logging II	2V+1Ü	42/108	5	60	40	0	0
Total	4V+1Ü	70/200	9	60	40	0	0

Prerequisites for	No special prerequisites
attending: Learning objectives /	Comprehension of principles of this specialized drilling technology as well as to
Skills:	evaluate merits and risks of it to be able to make efficient use of it in developing reservoirs
	Knowledge of logging methods in cased holes and interpretation
Course outline:	Directional Drilling:
	Directional Drilling (Fundamentals, Planning and Design) Devrehele Meters
	Downhole Motors Directional Survey Methods
	 Directional Survey Methods BHAs for Well Steering
	Geosteering Methods
	Economic Aspects of Directional Drilling
	Well Logging II:
	Fundamentals of geophysical well logging methods
	 History – goals – technical equipment
	Radiometric methods
	Accoustic borehole measurements
	Electrical methods
Course assignments/ form	Partial examination. Written (90 min) or oral exam (30-40 min) for each discipline.
of examination:	At least 50% of maximal score is required to pass the written exam.
	The module grade is evaluated as average grade from the both partial grades
	weighted by the Credit point number.
Media:	Multimedia lecturing tools
	PowerPoint presentation software and white board
	Hard copy of lecture notes to be provided at the beginning of the course
	A soft pdf copy of PowerPoint presentation with the Stud IP directory
Literatura	Computer aided exercises by using professional software
Literature:	Directional Drilling: 1. Aadnoy, B. S., Cooper, J., Miska, S. Z., Mitchell, R. F., Payne, M. L.: Advanced
	Drilling and Well Technology. SPE, 2009.
	2. Economides, M. J., Watters L. T., Dunn-Norman, S.: Petroleum Well
	Construction. John Wiley & Sons, 1998
	3. Inglis, T. A.: Petroleum Engineering and Development studies, Vol. 2
	Directional drilling. Springer,1987 or later
	4. Controlled Directional Drilling. Rotary drilling series, Petroleum Extension
	Service (PETEX), 2009
	<u>Well Logging II</u>
	3. Ellis, D.E.: Well Logging for Earth Scientists, Elsevier, 1987
Additional information:	Fricke, S.; Schön, J.: Praktische Bohrlochgeophysik, Enke, 1999 Participants are requested to register for the attendance with the course directory
	at the Stud.IP

Module 9: Production

Degree Programme:	Petroleum Engineering (M.Sc.)
Module number:	9
Name of the module:	Production
Courses:	Advanced Hydrocarbon Conditioning and Processing I
	Enhanced Production
Term:	2
Person responsible for the	Prof. Oppelt
module:	
Lecturers:	DiplIng. Waldvogel, Dr. Lungwitz
Language:	English
Course type:	Compulsory subjects (PF) of the Drilling&Production area of study

		Workload [h]			Ski	lls	
Courses	HPW	Contact hours/Self-study	СР	FK	MK	SK	SOK
S 6110 Advanced Hydrocar- bon Conditioning and Processing	2V	28/62	3	50	30	20	0
S 6169 Enhanced Production	2V	42/78	4	60	40	0	0
Total	4V	70/140	7	55	35	10	0

Prerequisites for	No special prerequisites				
attending:					
Learning objectives /	Acquisition of knowledge of techniques and design requirements for the				
Skills:	conditioning & processing of oil & gas as well as methodologies and technologies				
	to enhance hydrocarbon production				
Course outline:	Advanced Hydrocarbon Conditioning and Processing I:				
	Oil & Gas Processing & Equipment				
	Process Simulation				
	 Separation & Oil Treating Facilities 				
	Heat Transfer and Facilities				
	Pumps, Compressors & Diverters				
	Refrigeration Systems in Gas Processing				
	Design of Gas Dehydration Facilities				
	 Advances Sour Gas Processing and Sulphur Recovery 				
	Operation of Surface Facilities				
	Maintenance of Surface Facilities				
	 Safety, Environment and Human Factors in Design and Operations 				
	Enhanced Production:				
	 Advanced artificial lift and gas well deliquification 				
	Multiphase pumps and wet gas compressors				
	Subsea boosting				
	Well Stimulation				
	 Real-time flow monitoring and control 				
	Production logging				
Course assignments/ form	Module exam. Written (90 min) or oral exam (30-40 min) for each discipline. At				
of examination:	least 50% of maximal score is required to pass the written exam.				
Media:	Multimedia lecturing tools				
	 PowerPoint presentation software and white board 				
	 Hard copy of lecture notes to be provided at the beginning of the course 				
	 A soft pdf copy of PowerPoint presentation with the Stud.IP directory 				
	 Computer aided exercises by using professional software 				
Literature:	Advanced Hydrocarbon Conditioning and Processing I:				
	1.GPSA engineering data book 13th edition				
	2.Katz, D. Lee, R. L.: Natural gas engineering, production and storage. McGraw-				
	Hill Publ. Co., 1990				
	3.Lake, L.W. (Ed.): Petroleum engineering handbook. Vol. III-IV, SPE, 2007. Enhanced Production:				
	1. Economides, M.J., Hill, A.D. and Ehlig-Economides, C.: Petroleum Production				
	Systems. Prentice Hall Petroleum Engineering Series, 1994				
	2. Authentic training materials of the Schlumberger Co.				
Additional information:	Participants are requested to register for the attendance with the course directory				

at the Stud.IP

Module 10 b: Management, Economics and Law

Degree Programme:	Petroleum Engineering (M.Sc.)
Module number:	10 b
Name of the module:	Management, Economics and Law
Courses:	Energy Law I
	Planning and Budgeting
	Health, Safety and Environmental Management
Term:	2-3
Person responsible for the	Prof. Oppelt
module:	
Lecturers:	Prof. Wolkewitz, Dr. Schäfer, DiplIng. Söntgerath
Language:	English
Course type:	Compulsory subjects (PF) of the Drilling&Production area of study

		Workload [h]		Skills			
Courses	HPW	Contact hours/Self-study	СР	FK	MK	SK	SOK
S 6168 Energy Law I	1V	14/46	2	60	40	0	0
W 6114 Planning and Budgeting	2V	28/62	3	60	40	0	0
W 6135 Health, Safety and Environmental Management	1V	14/46	2	25	25	25	25
Summe	4V	56/154	7	45	35	10	10

Prerequisites for Attending:	No special prerequisites
Skills:	Acquisition of knowledge of basics of public law, methods of business administration, health safety and environment issues related to oil and gas activities including the main elements of the legal framework, planning tools and decision models / Students develop skills to understand and apply the elements of egal framework, planning tools and decision models
	 Energy Law I: Public law as basis for oil and gas activities – a general introduction Typical legal systems for upstream oil and gas activities such as Licenses/Concessions, Production Sharing Agreements and Service Contracts Fiscal regimes for oil and gas activities Environmental law The legal framework of mid- and downstream oil and gas activities Planning and Budgeting Basic Concepts and Definitions On Planning Vertical (Value Chain), Horizontal and Mixed Types of Business Types of Investment Evaluation of Prospects and Investments Search for and Screening of Investment Opportunities Establishing an Investment Portfolio From Portfolio to Budget Proposals The Capital Budget and Realization Strategic Investment Plan Follow-up and Controlling
	Health, Safety and Environmental Management Organization of Safety and Loss Management Risk and its Management Machinery and Equipment Safety Kyoto Protocol and beyond Clear Air for Europe (CAFE) Dangerous Substances Waste and Water Management Offshore Regulations Audit - a new tool? Biodiversity - who cares?
_	Homework assignments/Partial examination by disciplines. Written (90 min) or bral exam (30-40 min). At least 50% of maximal score is required to pass the

TU Clausthal

	written exam. The module grade will be evaluated as average from the partial grades weighted by the credit points number.
Media:	 Multimedia lecturing tools PowerPoint presentation software and white board Hard copy of lecture notes to be provided at the beginning of the course A soft pdf copy of PowerPoint presentation available with the Stud.IP course directory Video records of lectures available with the Stud.IP course directory
Literature:	 <u>Energy Law I</u> 1. Corino, Carsten, Energy Law in Germany and its Foundations in International and European Law, Munich 2003 2. Kühne, Gunther, The new West German mining law, in: 19 Land and Water Law Review 1984, pp. 371-394 3. Respective texts of relevant laws and related documents that are provided in the Stud.IP 4. Scripts on selected topics that are provided in the Stud.IP
	 <u>Planning and Budgeting</u> 1. Newendorp, P. D., Schuler, J. R.: Decision Analysis for Petroleum Exploration; 2nd edition. Planning Press, Tulsa, 2000. 2. Megill, R. E.: An Introduction to Exploration Economics. Pennwell Corp, Tulsa, 1988 3. Mian, M.A.: Project Economics and Decision Analysis. Pennwell Corp, Tulsa, 2011 <u>Health, Safety and Environmental Management</u> Lecture notes Handouts and authentic materials based on the EU and German national health, environmental and occupational protection laws
Additional information:	Participants are requested to register for the attendance with the course directory at the Stud.IP

Module 12: Seminar

Degree Programme:	Petroleum Engineering (M.Sc.)
Module number:	12
Name of the module:	Seminar
Courses:	Advanced Drilling & Production Topics
Term:	2
Person responsible for the	Prof. Oppelt
module:	
Lecturers:	All faculty and scientific staff members in the field of drilling and production
	engineering
Language:	English
Course type:	Compulsory subjects (PF) of the Drilling & Production area of study

		Workload [h]		Skills			
Courses	HPW	Contact hours/Self-study	СР	FK	MK	SK	SOK
S 6120 Advanced							
Drilling & Production	2S	28/92	4	30	30	10	30
Topics							

Prerequisites for attending:	No special requirements
Learning objectives / Skills:	Development the ability to apply theoretical knowledge and state-of-the-art methods and technology for the individual problem solving in the field of petroleum engineering/ Strengthening of skills to report and to present results to an audience of peers
Course outline:	Students work on assigned special topics, report and present results obtained via individual efforts within of a regular time of 6-7 weeks.
Course assignments/ form of examination:	Soft (pdf) copies of the seminar report, poster and presentation to be uploaded to the Stud.IP seminar directory in due time/ Seminar report, poster, presentation to an audience of peers, faculty and scientific staff members and discussion. The overall seminar grade is evaluated as weighted average affected by 40% of the report grade, 40 % of the presentation grade and 10 % of the poster grade and 10% of the moderation grade.
Media:	 DIN A3 Poster to be posted at a pin-board MS PowerPoint presentation White board
Literature:	Key literature sources should be provided by the supervisor. Assessment of further relevant literature sources should be carried out by the candidate as part of seminar study
Additional information:	Participants are requested to register for the attendance with the seminar directory at the Stud.IP

Compulsory subjects of Deep Geothermal Systems area of study

Module 4: Data Acquisition and Evaluation

Degree Programme:	Petroleum Engineering
Module number:	4
Name of the module:	Data Acquisition and Evaluation
Courses:	Applied Well Test Analysis
	Well Logging II
Term:	2
Person responsible for the	Prof. Ganzer
module:	
Lecturers:	Prof. Ostrowski, Prof. Weller
Language:	English
Course type:	Compulsory subjects (PF) of the Deep Geothermal Systems area of study

		Workload [h]		Skills			
Courses	HPW	Contact hours/Self-study	СР	FK	MK	SK	SOK
S 6109 Applied Well Test Analysis	2V+1Ü	42/108	5	60	40		
S 4023 Well Logging II	2V+1Ü	42/108	5	60	40		
Total	4V+2Ü	84/216	10	60	40		

Prerequisites for	No special prerequisites
attending: Learning objectives / Skills:	Acquisition of knowledge in the origination, validation, interpretation and uncertainty of engineering and geo-scientific data as well as the ability to handle, to interpolate and to extrapolate it/ Students develop skills to acquire and to evaluate data required for reservoir characterization and simulation studies.
Course outline:	 <u>Applied Well Test Analysis</u> Objectives of Well Testing Downhole and Surface Equipment Well Test Principles, Reservoir Models, Inner & Outer Boundary Conditions Single Well Test Analysis: Drawdown, Build-Up (DST) Pulse Test, Minifrac Testing, Layered Reservoir, Vertical Interference and Horizontal Well Test Multiple Well Test Analyses: Interference Test, Pulse Interference Test; Gas Well Test Analysis Interpretation Methodology. <u>Well Logging II (cased hole logging)</u> Introduction Radiometric methods Acoustic methods
	Electrical methods
Course assignments/ form of examination:	Partial examination. Written (90 min) or oral exam (30-40 min) for each discipline. At least 50% of maximal score is required to pass the written exam. The module grade is evaluated as average grade from the both partial grades weighted by the credit points number.
Media:	 Multimedia lecturing tools PowerPoint presentation software and white board Hard copy of lecture notes to be provided at the beginning of the course A soft pdf copy of PowerPoint presentation with the Stud.IP directory Computer aided exercises by using professional well test analysis and interpretation software
Literature:	 Applied Well Test Analysis 6. Slider, H. C.: A Simplified Method of Pressure Buildup Analysis for a Stabilized Well, Trans., AIME, 1971 7. Earlougher R. C.: Advances in Well Test Analysis, Monograph Series, SPE, Dallas 1977 8. Horner, D. R.: Pressure Analysis Methods, Reprint Series, SPE, Dallas 1967 9. Lee, J.: Well Testing, SPE of AIME, New York 1982 10. Matthews, C. S. & Russel, D. G.: Pressure Buildup and Flow Tests in Wells, Monograph Series, SPE, Dallas 1967 <u>Well Logging II</u> 4. Ellis, D.E.: Well Logging for Earth Scientists, Elsevier, 1987 5. Fricke, S.; Schön, J.: Praktische Bohrlochgeophysik, Enke, 1999
Additional information:	Participants are requested to register for the attendance with the course directory at the Stud.IP

Module 7: Advanced Drilling and Completion

Degree Programme:	Petroleum Engineering (M.Sc.)
Module number:	7
Name of the module:	Advanced Drilling and Completion
Courses:	Advanced Drilling Technology
	Completion and Workover
Term:	1-2
Person responsible for the	Prof. Oppelt
module:	
Lecturers:	Prof. Thonhauser, Dr. Prohaska, Prof. Teodoriu, Dr. Bello
Language:	English
Course type:	Compulsory subjects (PF) of the Deep Geothermal Systems area of study

		Workload [h]		Skills			
Courses	HPW	Contact hours/Self-study	СР	FK	MK	SK	SOK
W 6122 Advanced Drilling Technology	2V+1Ü	42/108	5	60	40	0	0
S 6121 Completion and Workover	2V+1Ü	42/108	5	60	40	0	0
Total	4V+2Ü	84/216	10	60	40	0	0

Prerequisites for	No special prerequisites
attending:	no special prerequisites
0	Accuration of professed languages in deiling angine and the childs to apply
Learning objectives / Skills:	 Acquisition of profound knowledge in drilling engineering and the ability to apply it in the field of wellberg planning. Comprehension of advanced modern drilling
Skills.	it in the field of wellbore planning. Comprehension of advanced modern drilling technologies as well as merits and risks of special drilling technology to develop
	petroleum reservoirs efficiently
	Acquisition of special knowledge in the drilling, workover and completion
	technology to meet requirements of wellbore deliverability, safety and
	integrity /Skills of well planning based on the profound knowledge and ability to
	meet requirements and options will be extended to the advanced level and
	consolidated
Course outline:	Advanced Drilling Technology:
course outline.	Drilling concepts
	Well design procedure
	Drilling optimization
	Drilling performance analysis
	Drillstring dynamics
	Drilling problems
	 HP/HT wells, horizontal and extended reach wells, multilaterals
	Under balanced drilling
	U
	New developments in drilling operations Offenere drilling
	Offshore drilling
	Blow out
	Case studies Completion and Workeyer
	Completion and Workover:
	Completion objectives (definition, considerations, types)
	Mechanical aspects of well testing
	Completion fluids and perforation
	Tubing string design
	Packer and downhole tools
	• Flow control
	Data acquisition & intelligent completion
	Workover objectives & workover operations
	Workover rigs & tools
	Workover equipment (wire line, snubbing unit, coiled tubing)
	Completion & workover design & execution
Course assignments/ form	Partial examination. Written (90 min) or oral exam (30-40 min) for each discipline.
of examination:	At least 50% of maximal score is required to pass the written exam.
	The module grade is evaluated as average grade from the both partial grades
Madia	weighted by the Credit point number.
Media:	Multimedia lecturing tools
	 PowerPoint presentation software and white board

	 Hard copy of lecture notes to be provided at the beginning of the course
	A soft pdf copy of PowerPoint presentation available with the Stud.IP course
	directory
	 Video records of lectures available with the Stud.IP course directory
Literature:	Advanced Drilling Technology:
	11. Aadnoy, B.S.: Modern Well Design. Rotterdam, Balkema Publications, 2010.
	12. Aadnoy, B. S., Cooper, J., Miska, S. Z., Mitchell, R. F., Payne, M. L.: Advanced
	Drilling and Well Technology. SPE, 2009.
	13. Azar, J. J., Robello Samuel, G.: Drilling Engineering. PennWell Corp., 2007
	14. Baker, R.: A primer oilwell drilling. Publ.: Petroleum Extension Service. Univ. of
	Texas at Austin, Sixth Edition, Austin, Texas, 2001
	15. Drilling_Engineering Workbook- A Distributed Learning Course. 80270H Rev.
	B. Baker_Hughes_INTEQ, Dec. 1995.
	: 16. Economides, M. J., Watters L. T., Dunn-Norman, S.: Petroleum Well
	Construction. John Wiley & Sons, 1998
	17. IADC Drilling Manual, eBook Version (V.11), International Association of
	Drilling Contractors, 2000.
	18. Lyons, W.C. (Edit.): Standard Handbook of Petroleum and Natural Gas
	Engineering Vol. 1 and 2. Butterworth-Heinemann, 1996.
	19. Mitchell, R. F., Miska, S. Z.: Fundamentals of Drilling Engineering. SPE book
	series, 2010.
	20.Rabia, H.: Well engineering and construction. Entrac Consulting, 2001.
	Completion and Workover:
	6. Aadnoy, B.S.: Modern Well Design. Rotterdam, Balkema Publications, 2010.
	7. Perrin, D.: Well completion and servicing - Oil and gas field development
	techniques, Édition Technip, 1999.
	8. Adams, N.: Workover Well Control. PennWell Books, 1981
	9. Bourgoyne A. T., Millheim, K. K., Chenevert, M.E., Young, F. S.: Applied
	Drilling Engineering, SPE Textbook Series Vol. 2, 1986.
Sonctioner	10. Hill, A. D., Ding Zhu, Economides, M. J.: Multilateral Wells. SPE, 2008
Sonstiges:	Participants are requested to register for the attendance with the course directory
	at the Stud.IP

Module 10 a: Economics and Law

Degree Programme:	Petroleum Engineering (M.Sc.)
Module number:	10 a
Name of the module:	Management, Economics and Law
Courses:	Energy Law I
	Planning and Budgeting
Term:	2-3
Person responsible for the	Prof. Oppelt
module:	
Lecturers:	Prof. Wolkewitz, Dr. Schäfer
Language:	English
Course type:	Compulsory subjects (PF) of the Deep Geothermal Systems area of study

		Workload [h]		Skills			
Courses	HPW	Contact hours/Self-study	СР	FK	MK	SK	SOK
S 6168 Energy Law I	1V	14/46	2	60	40	0	0
W 6114 Planning and	2V	28/62	2	60	40	0	0
Budgeting	ZV	28/62	3	60	40	0	0
Total	3V	42/108	5	60	40	0	0

Prerequisites for	No special prerequisites
attending: Learning objectives / Skills:	Acquisition of knowledge of basics of public law and methods of business administration related to oil and gas activities including the main elements of the legal framework, planning tools and decision models / Students develop skills to understand and apply the elements of legal framework, planning tools and decision models
Course outline:	 Energy Law I: Public law as basis for oil and gas activities – a general introduction Typical legal systems for upstream oil and gas activities such as Licenses/Concessions, Production Sharing Agreements and Service Contracts Fiscal regimes for oil and gas activities Environmental law The legal framework of mid- and downstream oil and gas activities Planning and Budgeting Basic Concepts and Definitions On Planning Vertical (Value Chain), Horizontal and Mixed Types of Business Types of Investment Evaluation of Prospects and Investments Search for and Screening of Investment Opportunities Establishing an Investment Portfolio From Portfolio to Budget Proposals The Capital Budget and Realization Strategic Investment Plan Follow-up and Controlling
Course assignments/ form of examination:	Partial examination. Written (90 min) or oral exam (30-40 min) for each discipline. At least 50% of maximal score number is to be collected to pass the written exam. The module grade is evaluated as average grade from the both partial grades weighted by the credit points number.
Media:	 Multimedia lecturing tools PowerPoint presentation software and white board Hard copy of lecture notes to be provided at the beginning of the course A soft pdf copy of PowerPoint presentation available with the Stud.IP course directory Video records of lectures available with the Stud.IP course directory
Literature:	 <u>Energy Law I</u> 5. Corino, Carsten, Energy Law in Germany and its Foundations in International and European Law, Munich 2003 6. Kühne, Gunther, The new West German mining law, in: 19 Land and Water Law Review 1984, pp. 371-394 7. Respective texts of relevant laws and related documents that are provided in

	the Stud.IP 8. <u>Scripts on selected topics that are provided in the Stud.IP</u>
	 <u>Planning and Budgeting</u> Newendorp, P. D., Schuler, J. R.: Decision Analysis for Petroleum Exploration; 2nd edition. Planning Press, Tulsa, 2000. Megill, R. E.: An Introduction to Exploration Economics. Pennwell Corp, Tulsa, 1988 Mian, M.A.: Project Economics and Decision Analysis. Pennwell Corp, Tulsa, 2011
Additional information:	Participants are requested to register for the attendance with the course directory at the Stud.IP

Module 12: Seminar

Degree Programme:	Petroleum Engineering (M.Sc.)
Module number:	12
Name of the module:	Seminar
Courses:	Advanced Geothermal Engineering Topics
Term:	2
Person responsible for the	Prof. Ganzer
module:	
Lecturers:	All faculty and scientific staff members in the field of reservoir engineering
Language:	English
Course type:	Compulsory (PF) subjects of the Deep Geothermal Systems area of study

Courses	HPW	Workload [h] Contact hours/Self-study	СР	Skills FK MK SK			SOK
S 6119 Advanced Geothermal Engineering Topics	2S	28/92	4	30	30	10	30

Prerequisites for attending:	No special requirements
Learning objectives / Skills:	Development the ability to apply theoretical knowledge and state-of-the-art methods and technology for the individual problem solving in the field of petroleum engineering/ Strengthening of skills to report and to present results to an audience of peers
Course outline:	Students work on assigned special topics, report and present results obtained via individual efforts within of a regular time of 6-7 weeks.
Course assignments/ form of examination:	Soft (pdf) copies of the seminar report, poster and presentation to be uploaded to the Stud.IP seminar directory in due time/ Seminar report, poster, presentation to an audience of peers, faculty and scientific staff members and discussion. The overall seminar grade is evaluated as weighted average affected by 40% of the report grade, 40 % of the presentation grade, 10 % of the poster grade and 10% of the moderation grade.
Media:	 DIN A3 Poster to be posted at a pin-board MS PowerPoint presentation White board
Literature:	Key literature sources should be provided by the supervisor. Assessment of further relevant literature sources should be carried out by the candidate as part of seminar study
Additional information:	Participants are requested to register for the attendance with the seminar directory at the Stud.IP

Module 21: Geothermal Systems

Degree Programme:	Petroleum Engineering (M.Sc.)
Module number:	14
Name of the module:	Geothermal Systems
Courses:	Enhanced Geothermal Systems
	Geothermal Energy Production Systems
Term:	2-3
Person responsible for the	Prof. Ganzer
module:	
Lecturers:	DrIng. R. Hincapie, NN
Language:	English
Course type:	Compulsory subjects (PF) of the Deep Geothermal Systems area of study

		Workload [h]			Ski	lls	
Courses	HPW	Contact hours/Self-study	СР	FK	MK	SK	SOK
S 6149 Enhanced Geothermal Systems	2V	42/78	4	60	40	0	0
W 6150 Geothermal Energy Production Systems	2V	42/78	4	60	40	0	0
Total	4V	84/156	8	60	40	0	0

Prerequisites for	No special prerequisites
attending:	No special prerequisites
Learning objectives /	 Acquisition of knowledge of geothermal reservoir characterisation
Skills:	Acquisition of theoretical and practical knowledge of reservoir modelling
	and simulation techniques
	 Theoretical and practical understanding of the geothermal production system,
	from reservoir to point of sale.
	• Acquisition of knowledge of the different uses of geothermal energy: power
	generation, heat pumps and direct heating, combined heat and power.
Course outline:	Enhanced Geothermal Systems:
	• Physical basis of heat transfer: fundamental terms of heat conduction,
	heat conduction equations, thermal properties of rocks,
	 Terrestrial heat flow density: spatial and temporal variations,
	• Thermal state of the earth's interior: methods of temperature determination (of
	uppermost crust, at great depths),
	• Natural and technical effects to the temperature field of the subsurface,
	e.g. influence of meteoric water
	Geothermal reservoir types
	Concepts of geothermal systems
	 Mathematical foundations of single and multi- phase flow in porous media
	 Analytical and numerical methods
	Phase behavior
	Well productivity index
	Recovery factor
	Simulation
	Well Stimulation and engineered geothermal systems
	Geothermal Energy Production Systems:
	Geothermal power generating systems: singleflash steam plants; double-flash
	• steam plants; dry-steam plans; binary cycle power plants; advanced and
	hybrid systems,
	• Field examples,
	• Geothermal heat use without involving a power plant or a heat pump,
	Geothermal heat pumps,
	Use of spent fluids from geothermal power plants for direct use applications in
Course accimments/form	so-called "cascaded" operation. Partial examination. Written (90 min) or oral exam (30-40 min) for each discipline.
Course assignments/ form of examination:	At least 50% of maximal score is required to pass the written exam.
	The module grade is evaluated as average grade from the both partial grades
	weighted by the Credit point number.
Media:	Multimedia lecturing tools
	 PowerPoint presentation software and white board
	 Hard copy of lecture notes to be provided at the beginning of the course
	· · · · · · · · · · · · · · · · · · ·

	A soft pdf copy of PowerPoint presentation available with the Stud.IP course directory
	 Video records of lectures available with the Stud.IP course directory
Literature:	 Enhanced Geothermal Systems: 1. Buntebarth, G. (1984): Geothermics - an introduction, Springer, Berlin 2. SPE.ORG the eLibrary of SPE. 3. Grant, M.A., Bixley, P.F. (2011): Geothermal Reservoir Engineering, 2nd Edition, Elsevier 4. Huenges, E. (editor) (2010): Geothermal Energy Systems: Exploration, Development, and Utilization, Wiley-VCH 5. Chierici G. L. (1995): Principles of Petroleum Reservoir Engineering. Springer-Verlag 6. Craft B.C., Hawkins, M., Terry, R.E. (1991): Applied Petroleum Reservoir Engineering, 2nd edition 7. Dake, L.P. (1978): Fundamentals of Reservoir Engineering. Elsevier Geothermal Energy Production Systems: 1. IGA Geothermal Conference Paper Database at http://www.geothermal- energy.org/publications_and_services/conference_paper_database.html 2. Geothermal Energy (a Springer Open Journal) Database at http://www.geothermal-energy-journal.com/ 3. Economides, M.J., Hill, A.D., Ehlig-Economides, C., Zhu, D. (2012): Petroleum 4. Production Systems, 2nd Edition, Prentice Hall 5. DiPippo, R. (2012): Geothermal Power Plants - Principles, Applications, Case Studies and Environmental Impact, 3rd Edition, Butterworth-Heinemann
Sonstiges:	Participants are requested to register for the attendance with the course directory at the Stud.IP

Compulsory optional subjects of Reservoir Management area of study

Module 15.1: Petrophysics

Degree Programme:	Petroleum Engineering (M.Sc.)
Module number:	15.1
Name of the module:	Petrophysics
Courses:	Petrophysics I
Term:	1
Person responsible for the	Prof. Ganzer
module:	
Lecturers:	Prof. Weller
Language:	English
Course type:	Compulsory optional subjects (WPF) of Reservoir Management area of study

		Workload [h] Skills			ls		
Courses	HPW	Contact hours/Self-study	СР	FK	MK	SK	SOK
W 4021 Petrophysics I	2V+1Ü	42/108	5	60	40		

Prerequisites for attending:	No special prerequisites					
Learning objectives /	Knowledge of geophysical rock properties and their application to the					
Skills:	characterization of reservoirs.					
Course outline:	 The physical properties of rocks, their relation to other parameters and experimental procedures to derive petrophysical parameters are presented. Introduction Petrophysics in Geophysics 					
	- Classification of rocks					
	- Structure and texture					
	Pore space properties					
	- Pore space, porosity , saturation					
	- Tortuosity, constrictivity					
	- Internal surface					
	- Fractal dimension					
	• Density					
	- Density of different rocks					
	- Determination of density in laboratory, in situ and in wells					
	- Different kinds of density					
	Magnetic Properties Dere dia formagneticm					
	 Para-, dia-, ferro-, and ferrimagnetism Magnetic properties of minerals and rocks 					
	- Remanent magnetization					
	- The influence of temperature and pressure					
Course assignments/ form	Module exam. Written (90 min) or oral exam (30-40 min). At least 50% of maximal					
of examination:	score is required to pass the written exam.					
Media:	Multimedia lecturing tools					
	 PowerPoint presentation software and white board 					
	 Hard copy of lecture notes to be provided at the beginning of the course 					
	 A soft pdf copy of PowerPoint presentation with the Stud.IP directory 					
	 Computer aided exercises by using professional software 					
Literature:	1. Guéguen, Y.; Palciauskas, V.: Introduction to the Physics of Rocks. Princeton					
	University Press, 1994					
	2. Schön, J. H.: Physical Properties of Rocks. Pergamon, Oxford, 1996					
Additional information:	Participants are requested to register for the attendance with the course directory					
	at the Stud.IP					

Module 15.2: Geostatistics

Degree Programme:	Petroleum Engineering (M.Sc.)
Module number:	15.2
Name of the module:	Geostatistics
Courses:	Advanced Geostatistics
Term:	1
Person responsible for the	Prof. Ganzer
module:	
Lecturers:	Dr. Mueller
Language:	English
Course type:	Compulsory optional subjects (WPF) of Reservoir Management area of study

		Workload [h]			Skil	ls	
Courses	HPW	Contact hours/Self- study	СР	FK	MK	SK	SOK
W 4635 Advanced Geostatistics	2V+1Ü	42/108	5	60	40		

Dreve quicites for						
Prerequisites for	No special prerequisites					
attending:						
Learning objectives /	Acquisition of knowledge on the origination, validation, interpretation,					
Skills:	uncertainties, spatial extrapolation and interpolation as well as the handling of the					
	geotechnical and the geoscientific data. / Students will develop profound skills in					
	the acquisition, evaluation of engineered and the geoscientific data required for					
	the reservoir characterization and simulation.					
Course outline:						
Course outline.	 Introduction and Basic Concepts; 					
	Univariate Analysis;					
	 Measures of Heterogeneity; 					
	Hypothesis Tests;					
	Bivariate Analysis;					
	Basics of Geostatistics: Variogramme calculation and interpretation, Kriging;					
	Use of Statistics in Petroleum Geology					
Course assignments/ form	Module exam. Written (90 min) or oral exam (30-40 min) for each discipline. At					
of examination:	least 50% of maximal score is required to pass the written exam.					
Media:	Multimedia lecturing tools					
	 PowerPoint presentation software and white board 					
	 Hard copy of lecture notes to be provided at the beginning of the course 					
	A soft pdf copy of PowerPoint presentation with the Stud.IP directory					
	Computer aided exercises by using professional software					
Literature:						
Additional information:	Participants are requested to register for the attendance with the course directory					
	at the Stud.IP					

Module 15.3: Rock Physics

Degree Programme:	Petroleum Engineering (M.Sc.)
Module number:	15.3
Name of the module:	Rock Physics
Courses:	Advanced Rock Physics
Term:	1
Person responsible for the	Prof. Ganzer
module:	
Lecturers:	Dr. Wegner
Language:	English
Course type:	Compulsory optional subjects (WPF) of Reservoir Management area of study

	2	Workload [h] Skills					
Courses	HPW	Contact hours/Self-study	СР	FK	MK	SK	SOK
W 6118 Advanced Rock Physics	2V+1Ü	42/108	5	60	40		

Prerequisites for	No special prerequisites				
attending:					
Learning objectives /	Acquisition of advanced knowledge in the evaluation of physical properties of				
Skills:	reservoir rocks/				
	Ability to understand and to apply the advanced techniques of reservoir rock				
0	characterization				
Course outline:	Review of rock properties and saturation functions				
	 Special and standard core analysis laboratory tests 				
	 Introduction to the "Digital Rock Technology" 				
	 Imaging of rocks using CT, micro-CT, FIB, etc. 				
	 Generation of 3D models of rocks and single phase pore-scale simulation to 				
	derive petro physical properties of rocks such as porosity, absolute				
	permeability, NMR, elastic properties, etc.				
	 Multiphase pore-scale simulation to derive capillary pressure and relative 				
	permeabilities				
	 Special topics: Carbonates and unconventional rocks 				
	Introduction to Microfluidic devices that resemble porous media				
	 Micro-models and Micro-fluidics – Micro-model construction, experimental 				
	setup, wettability control, etc.				
	 Investigation of EOR methods in micro-models that resemble porous media 				
	 Micro-fluidic measurement devices Discussion of advantages and disadvantages of the different characterization 				
	 Discussion of advantages and disadvantages of the different characterization methods 				
	memous				
	Exercises:				
	Calculation of permeability and porosity data from laboratory flooding				
	experiments				
	Conversion of mico-CT to 3D models and calculation of petrophysical				
	parameters such as porosity, permeability, grain size distribution, pore-size				
	distribution, etc. as well as multiphase flow properties such as relative				
	permeability and capillary pressure using the software packages Matlab,				
	Comsol and GeoDict				
	• Comparison of laboratory flooding experiments and results obtained by Digital				
	Rocks				
	Evaluation of micro-model experiments				
Course assignments/ form	Module exam. Written (90 min) or oral exam (30-40 min). 50% of maximal score is				
of examination:	required to pass the written exam.				
Media:	Multimedia lecturing tools				
	 Hard copy of lecture notes to be provided at the beginning of the course. 				
	 Video records of lecture available with the Stud.IP directory of the course. 				
	A soft pdf copy of PowerPoint presentation slides to be provided on the Stud.IP				
	directory of the course.				
	 Exercises with application of the GeoDict software in PC Pool 				
Literature:	Authentic lecturing an training materials, Handouts				
Additional information:	Participants are requested to register for the attendance with the course directory				
	at the Stud.IP				

Module 15.4: Geoinformation Systems

Degree Programme:	Petroleum Engineering (M.Sc.)
Module number:	15.4
Name of the module:	Geoinformation Systems
Courses:	Geoinformation Systems
Term:	1
Person responsible for the	Prof. Ganzer
module:	
Lecturers:	Prof. Busch
Language:	English
Course type:	Compulsory optional subjects (WPF) of Reservoir Management area of study

		Workload [h]		Skills			
Courses	HPW	Contact hours/Self-study	СР	FK	MK	SK	SOK
W 6340 Geoinformation Systems	2V+1Ü	42/108	5	60	40		

Prerequisites for attending:	No special prerequisites
Learning objectives / Skills:	Acquisition of advanced knowledge in the principles of the Geo-data visualization and special application of the GIS in the oil and gas industry.
Course outline:	 Introduction GIS, what is it?; Definitions; Purpose of GIS; Solving a Problem using GIS; Special Applications from Oil and GAS Industries; Software packages Historical development Geo-data visualization, Maps; Maps and measurements; Computerization and GIS-technology Geographic Information and Spatial Data Real World Representation; Spatial phenomena; Spatial representation; Topology Time aspects; Spatial data structures; Data types; Reference frames Data capture Data input; Data preparation; Data quality GIS Functionality Basic maintenance functions; Operation types; Thematic data treatment; Spatial data analyses; Data transformation; Proximity operations; Overlay and intersection ; Topological analyses and Network operations; Advanced combined functions; Procedures in integrated Data Analyses Visualization (and Mapping)
Course assignments/ form of examination:	Module exam. Written (90 min) or oral exam (30-40 min).
Media:	 Multimedia lecturing tools Hard copy of lecture notes to be provided at the beginning of the course. Video records of lecture available with the Stud.IP directory of the course. A soft pdf copy of PowerPoint presentation slides to be provided on the Stud.IP directory of the course. Exercises with application of the GIS software
Literature:	 Graeme F. Bonham-Carter: Geographic Information Systems for Geoscientists: Modelling with GIS. Nicholas Chrisman: Exploring geographic information systems. de Buy et al.: Principles of Geographic Information Systems. Tor Bernhardsen: Geographical Information Systems. David J. Unwin, David O'Sullivan: Geographic Information Analysis. Michael N. DeMers: Fundamentals of Geographic Information Systems. Laurie Kelly, Michael F. Worboys, Matt Duckham. GIS. A computing perspective. Robert Laurini, Derek Thompson: Fundamentals of spatial information systems. David J. Maguire, Michael F. Goodchild, David W. Rhind: Geographical Information Systems.
Additional information:	Participants are requested to register for the attendance with the course directory at the Stud.IP

Module 16.1: Data Interpretation

Degree Programme:	Petroleum Engineering (M.Sc.)
Module number:	16.1
Name of the module:	Data Interpretation
Courses:	Applied Seismic Data Interpretation
Term:	2
Person responsible for the	Prof. Ganzer
module:	
Lecturers:	Dr. Haugwitz
Language:	English
Course type:	Compulsory optional subjects (WPF) of Reservoir Management area of study

		Workload [h]		Skills			_
Courses	HPW	Contact hours/Self-study	СР	FK	MK	SK	SOK
S 4008 Applied Seismic Data Interpretation	2V+1Ü	42/78	4	60	40		

Prerequisites for attending:	No special prerequisites
Learning objectives / Skills:	Theoretical knowledge about the propagation of seismic waves in the subsurface, seismic acquisition techniques and tools and main steps of seismic data processing/ Ability to understand and apply the advanced techniques of seismic data acquisition and interpretation
Course outline:	 Elements of solid earth physics; Acquisition: Seismic sources and receivers. Recording geometries, Traveltimes of refracted and reflected waves, true and apparent velocities, Moveout- and Normal Moveout-, Average-, RMS-, Stacking-,, velocities. Processing: Signal to noise ratio, filtering, convolution and correlation, sorting in CMP-(CDP-) geometries (gathers), static corrections, NMO-corrections and stacking; signal-stretch. Zero-offset sections and the exploding reflector model. Elements of seismic migration: Migrator's equation: ray-theoretical migration, diffractions in stacked sections; focussing diffractions to their origin. Elements of Seismic Interpretation: The theoretical (synthetic) seismogram: kinematical and dynamical aspects (traveltimes and amplitudes), vertical incidence, non-zero-offset seismograms, structural interpretation, "thin" -bed analysis; bright-, dim-, flat- spots. Elements of wavelet processing, resolution and recognition, basics of seismostratigraphy. Pitfalls in seismic interpretation: "the velocity-problem"& 2D-migration in a 3D-world.
Course assignments/ form of examination:	Module exam. Written (90 min) or oral exam (30-40 min). 50% of maximal score is required to pass the written exam.
Media:	 Multimedia lecturing tools Hard copy of lecture notes to be provided at the beginning of the course. A soft pdf copy of PowerPoint presentation slides to be provided on the Stud.IP directory of the course. Exercises with application of the PETREL software in PC Pool
Literature:	 Brown, A., 1991: Interpretation of 3-Dimensional Seismic Data. AAPG Mem 42, 3rd Edition, Tulsa, USA Evans, B.J., 1997: A Handbook for Seismic Data Acquisition in Exploration. Soc. Explor. Geophysicists, Tulsa Ikelle, L., & Amundsen, L., 2005: Introduction to Petroleum Seismology. Soc. Explor. Geophysicists, Tulsa Sheriff, R.E., & Geldart, L.P., 1982: Exploration Seismology. Cambridge University Press, UK Yilmaz, O., 1987: Seismic Data Processing. Soc. Explor. Geophysicists, Tulsa
Additional information:	Participants are requested to register for the attendance with the course directory at the Stud.IP

Module 16.2: Model Validation

Degree Programme:	Petroleum Engineering (M.Sc.)
Module number:	16.2
Name of the module:	Model Validation
Courses:	Reservoir Model Validation
Term:	2
Person responsible for the	Prof. Ganzer
module:	
Lecturers:	Dr. Schulze-Riegert
Language:	English
Course type:	Compulsory optional subjects (WPF) of Reservoir Management area of study

		Workload [h]			5	Skills	
Courses	HPW	Contact hours/Self-study	СР	FK	MK	SK	SOK
S 6103 Reservoir Model Validation	2V	28/78	4	60	40		

Prerequisites for attending:	No special prerequisites
Learning objectives / Skills:	Acquisition of advanced knowledge in the field of setting up of dynamic reservoir simulation models, evaluation of model uncertainties, calibration of flow models, evaluation of forecasting accuracy. / Ability to validate of dynamic reservoir simulation models as well as to approach the professional solution of real reservoir simulation problems on advanced methodical and systematical way.
Course outline:	 Principles of Model Validation, Subsurface Uncertainties, Multi-Dimensional Search and Solution Space, Foundations of Optimisation Methods; History Matching Inverse Problem Statement: Scope of History Matching, Bayesian Optimisation Framework; Challenges (III-posed problems, non-linearity of the solution space); Optimisation Approaches (manual, (semi-)automatic); Local and Global Optimisation Methods; Application of Optimisation Techniques;
	 Model Predictions and Uncertainty Quantification.
Course assignments/ form	Module exam. Written (90 min) or oral exam (30-40 min). At least 50% of maximal
of examination: Media:	 score number is required to pass the written exam. Multimedia lecturing tools
	 PowerPoint presentation software and white board Computer aided exercises using the application of the commercial reservoir modeling software MEPO and ECLIPSE (Schlumberger) Hard copy of lecture notes to be provided at the beginning of the course. A soft pdf copy of PowerPoint presentation slides to be provided on the Stud.IP directory of the course.
Literature:	 Aanonsen, S.I., Nawdal, G., Oliver, D.S., Reynolds, A.C., Valles, B.: The Ensemble Kalman Filter in Reservoir Engineering-a Review. SPEJ, Vol. 14, issue 3, 2009 or Paper SPE 117272-PA. Begg, S.H., Bratvold, R.B., Campbell, J.M.: Improving Investment Decisions Using a Stochastic Integrated Asset Model. Paper SPE 71414, 2001. Peake, W.T., Abadah, M., Skander, L.: Uncertainty Assessment using Experimental Design. Paper SPE 91820, 2005 Rwechungura, R. W., Dadashpour, M., Kleppe, J.: Advanced History Matching Techniques Reviewed. Paper SPE-142497-MS, 2011. Williams, M.A., Keating, J.F., Barghouty M.F.: The Stratigraphic Method: A structured approach to History Matching. Paper SPE 38014, SPRE Vol 1, Issue 2, 1998 Yeten, B, Castellini, A., Guyaguler, B., Chen, W.H.: A Comparison Study on Experimental Design and Response Surface Methodologies. Paper SPE 93347-MS, 2005
Additional information:	Participants are requested to register for the attendance with the course directory
Additional information:	 2, 1998 Yeten, B, Castellini, A., Guyaguler, B., Chen, W.H.: A Comparison Study on Experimental Design and Response Surface Methodologies. Paper SPE 93347-MS, 2005 Further recommended literature is available with the lecture notes

Module 16.3: Reservoir Modeling

Degree Programme:	Petroleum Engineering (M.Sc.)
Module number:	16.3
Name of the module:	Reservoir Modeling
Courses:	Fractured Reservoir Modeling
Term:	2
Person responsible for the	Prof. Ganzer
module:	
Lecturers:	Dr. Mueller
Language:	English
Course type:	Compulsory optional subjects (WPF) of Reservoir Management area of study

		Workload [h]			5	Skills	
Courses	HPW	Contact hours/Self-study	СР	FK	MK	SK	SOK
S 4620 Fractured Reservoir Modeling	2V	28/78	4	60	40		

Prerequisites for attending:	No special prerequisites
Learning objectives / Skills:	Acquisition of advanced knowledge in the field of setting up of geological and dynamic reservoir models, model uncertainties, calibration of flow models, evaluation of forecasting uncertainties/ Ability of setting up and evaluate of fractured reservoir models
Course outline:	 Deformation of reservoir rocks, tectonic styles; Classification, types and recording of fractures: Direct and indirect sources of information, mapping of Fracture properties; Origin of fractures, Stress field; Fracture model data base, data identification, methods of representation of fractures.
Course assignments/ form of examination:	Module exam. Written (90 min) or oral exam (30-40 min). 50% of maximal score number is required to pass the written exam.
Media:	 PowerPoint presentation software and white board Computer aided exercises using the application of the commercial geological modeling and reservoir simulation software Hard copy of lecture notes will be provided at the beginning of the course. A soft pdf copy of PowerPoint presentation slides will be provided on the Stud.IP directory of the course.
Literature:	
Additional information:	Participants are requested to register for the attendance with the course directory at the Stud.IP

Module 17.1: Natural Gas Recovery

Degree Programme:	Petroleum Engineering (M.Sc.)
Module number:	17.1
Name of the module:	Natural Gas Recovery
Courses:	Enhanced Natural Gas Recovery
Term:	2
Person responsible for the	Prof. Ganzer
module:	
Lecturers:	Dr. Reitenbach
Language:	English
Course type:	Compulsory optional subjects (WPF) of Reservoir Management area of study

		Workload [h]			5	Skills	
Courses	HPW	Contact hours/Self-study	СР	FK	MK	SK	SOK
S 6104 Enhanced Natural Gas Recovery	2V	28/78	4	60	40		

Prerequisites for	No special prerequisites
attending:	
Learning objectives /	Acquisition of advanced knowledge in principles of analysis and engineering
Skills:	computation of gas recovery processes and application of material laws and
	phase behavior of hydrocarbons
Course outline:	 Fundamentals and Methods of EGR Processes;
	 Enhanced Gas Recovery of Conventional Gas Reservoirs;
	 Enhanced Natural Gas Recovery by Dense Gas Flooding;
	 Unconventional Gas Reservoirs: Tight Gas Formations;
	Coal Bed Methane Recovery;
	Gas Hydrate Recovery and Utilization
Course assignments/ form	Module exam. Written (90 min) or oral exam (30-40 min). 50% of maximal score
of examination:	number is required to pass the written exam.
Media:	 PowerPoint presentation software and white board
	Hard copy of lecture notes will be provided at the beginning of the course.
	• A soft pdf copy of PowerPoint presentation slides will be provided on the Stud.IP
	directory of the course.
	Authentic report materials and handouts
Literature:	1. Amix J. W., Bass Jr. D. M., Whiting R.L.: Petroleum Reservoir Engineering.
	McGraw Hill, NY, 1960
	2. Katz, D., Lee, L.: Natural Gas Engineering. McGraw-Hill, 1990.
	3. McCain Jr. W.D.: Properties of Petroleum Fluids, Penn Well, Tulsa, OK, 1990
	4. Marle, C.M.: "Multiphase flow in porous media", Inst. Francais du Petrol, Edition
	Technip, 1981
	5. Papay, J.: Development of Petroleum Reservoirs. Academiai Kiado, Budapest, 2003.
	 Seidle, J.: Fundamentals of Coalbed Methane Reservoir Engineering. PennWell, 2011.
Additional information:	Participants are requested to register for the attendance with the course directory at the Stud.IP

Module 17.2: Natural Gas Storage

Degree Programme:	Petroleum Engineering (M.Sc.)
Module number:	17.2
Name of the module:	Natural Gas Storage
Courses:	Natural Gas Storage
Term:	2
Person responsible for the	Prof. Ganzer
module:	
Lecturers:	Dr. Reitenbach
Language:	English
Course type:	Compulsory optional subjects (WPF) of Reservoir Management area of study

		Workload [h]			5	Skills	
Courses	HPW	Contact hours/Self-study	СР	FK	MK	SK	SOK
S 6113 Natural Gas Storage	2V	28/78	4	60	40		

Prerequisites for attending:	No special prerequisites
Learning objectives / Skills:	Acquisition of advanced knowledge in principles of analysis, application of material laws and fundamentals of phase behavior of hydrocarbons and engineering of natural gas storage processes
Course outline:	 Media for Storage and Operation Principles; Fundamentals and definition of terms; Gas Storage in Salt Caverns: Geological, Geomechanical and Thermodynamic Conditions and Design of Caverns; Operation Fundamentals; Characteristics, Optimization Strategies; Gas Reservoirs: Reservoir Mechanics, Storage Capacity and Productivity, Gas Mixing; Well Design and Completion, Surface Installations; Aquifer Storages; Field Cases.
Course assignments/ form of examination:	Module exam. Written (90 min) or oral exam (30-40 min). 50% of maximal score number is required to pass the written exam.
Media:	 PowerPoint presentation software and white board Hard copy of lecture notes will be provided at the beginning of the course. A soft pdf copy of PowerPoint presentation slides will be provided on the Stud.IP directory of the course. Authentic report materials and handouts
Literature:	 Flanigan, O.: Underground Storage Facilities. Design and Implementation. Gulf Publishing Company, 1995. Tek, R. M.: Natural Gas Underground Storage:Inventory and Deliverability. PennWell Publishing Company. 1996.
Additional information:	Participants are requested to register for the attendance with the course directory at the Stud.IP

Module 17.3: Enhanced Production

Degree Programme:	Petroleum Engineering (M.Sc.)
Module number:	17.3
Name of the module:	Enhanced Production
Courses:	Enhanced Production
Term:	2
Person responsible for the	Prof. Oppelt
module:	
Lecturers:	Dr. Lungwitz
Language:	English
Course type:	Compulsory optional subjects (WPF) of Reservoir Management area of study

		Workload [h] Skills					
Courses	HPW	Contact hours/Self-study	СР	FK	MK	SK	SOK
S 6169 Enhanced Production	2V	42/78	4	60	40	0	0

Prerequisites for attending:	No special prerequisites					
Learning objectives / Skills:	Knowledge of methodologies and technologies to enhance hydrocarbon production					
Course outline:	 Advanced artificial lift and gas well deliquification Multiphase pumps and wet gas compressors Subsea boosting Well Stimulation Real-time flow monitoring and control Production logging 					
Course assignments/ form of examination:	Module exam. Written (90 min) or oral exam (30-40 min) for each discipline. At least 50% of maximal score number is required to pass the written exam.					
Media:	 Multimedia lecturing tools PowerPoint presentation software and white board Hard copy of lecture notes to be provided at the beginning of the course A soft pdf copy of PowerPoint presentation with the Stud.IP directory Computer aided exercises by using professional software 					
Literature:	 Economides, M.J., Hill, A.D. and Ehlig-Economides, C.: Petroleum Production Systems. Prentice Hall Petroleum Engineering Series, 1994 Authentic training materials of the Schlumberger Co. 					
Additional information:	Participants are requested to register for the attendance with the course directory at the Stud.IP					

Module 18.1: Energy Law

Degree Programme:	Petroleum Engineering (M.Sc.)
Module number:	18.1
Name of the module:	Energy Law
Courses:	Energy Law II
Term:	1/3
Person responsible for the	Prof. Oppelt
module:	
Lecturers:	Prof. Wolkewitz
Language:	English
Course type:	Compulsory optional subjects (WPF) of Reservoir Management area of study

		Workload [h]			Ś	Skills	
Courses	HPW	Contact hours/Self-study	СР	FK	MK	SK	SOK
W 6115 Energy Law II	2V	28/62	3	60	40	0	0

Prerequisites for attending:	No special prerequisites
Learning objectives / Skills:	Knowledge about the main contractual arrangements necessary along the value chain of oil and gas activities including the relevant regulatory framework
Course outline:	 Joint Operation Agreements as contractual arrangement within a consortium of companies Drilling Contracts and related agreements for oil and gas subsurface activities Engineering Procurement and Construction Contracts as main legal feature of oil and gas surface activities Transportation and Processing Agreements upstream Third party access and regulation in the midstream part of the value chain Gas Sales Agreements and energy supply contracts
Course assignments/ form of examination:	Homework assignments/ Written (90 min) or oral exam (30-40 min). At least 50% of maximal score number is required to pass the written exam.
Media:	 Multimedia lecturing tools PowerPoint presentation software and white board Hard copy of lecture notes to be provided at the beginning of the course A soft pdf copy of PowerPoint presentation available with the Stud.IP course directory Video records of lectures available with the Stud.IP course directory
Literature:	 Armour, John, Hansmann, Henry, Kraakman, Reinier, The Essential Elements of Corporate Law: What is Corporate Law?, in: Harvard Law School, Discussion Papers no. 643, 7/2009 Allen & Overy, Basic Principles of English Cotract Law, prepared for Advocates for Development, 2016 Pieck, Manfred, A Study of the Significant Aspect of German Cotract Law, in: Annual Survey of International & Comparative Law 3 (1996) 111 et seq. Respective internationally relevant Model Agreements and Contracts that are provided in the Stud.IP Respective texts of relevant laws and related documents that are provided in the Stud.IP
Additional information:	Participants are requested to register for the attendance with the course directory at the Stud.IP

Module 18.2: Health, Safety and Environmental Management

Degree Programme:	Petroleum Engineering (M.Sc.)
Module number:	18.2
Name of the module:	Health, Safety and Environmental Management
Courses:	Health, Safety and Environmental Management
Term:	3
Person responsible for the	Prof. Oppelt
module:	
Lecturers:	DiplIng. Söntgerath
Language:	English
Course type:	Compulsory optional subjects (WPF) of Reservoir Management area of study

		Workload [h]			5	Skills	
Courses	HPW	Contact hours/Self-study	СР	FK	MK	SK	SOK
W 6135 Health, Safety and Environmental Management	1V	14/46	2	25	25	25	25

Prerequisites for attending:	No special prerequisites
Learning objectives / Skills:	Acquisition of Knowledge on Impact of Health Safety and Environment issues on oil and gas activities and ways to deal with it.
Course outline:	 Organisation of safety and loss management Risk management Machinery and equipment safety Kyoto Protocol and beyond Clear Air for Europe (CAFE) Dangerous substances Waste and water management Offshore Regulations
	Audit - a new tool?Biodiversity - who cares?
Course assignments/ form of examination:	Homework assignments/ Written (90 min) or oral exam (30-40 min). At least 50% of maximal score number is required to pass the written exam.
Media:	 Multimedia lecturing tools PowerPoint presentation software and white board Hard copy of lecture notes to be provided at the beginning of the course A soft pdf copy of PowerPoint presentation available with the Stud.IP course directory Video records of lectures available with the Stud.IP course directory
Literature:	 Lecture Notes Handouts and authentic materials based on the EU and German national health, environmental and occupational protection laws
Additional information:	Participants are requested to register for the attendance with the course directory at the Stud.IP

Compulsory optional subjects of Drilling & Production area of study

Module 19.1: Energy Law

Degree Programme:	Petroleum Engineering (M.Sc.)
Module number:	19.1
Name of the module:	Energy Law
Courses:	Energy Law II
Term:	1/3
Person responsible for the	Prof. Oppelt
module:	
Lecturers:	Prof. Wolkewitz
Language:	English
Course type:	Compulsory optional subjects (WPF) of Drilling & Production area of study

		Workload [h]		Skills			
Courses	HPW	Contact hours/Self-study	СР	FK	MK	SK	SOK
W 6115 Energy Law II	2V	28/62	3	60	40	0	0

Prerequisites for attending:	No special prerequisites
Learning objectives / Skills:	Knowledge about the main contractual arrangements necessary along the value chain of oil and gas activities including the relevant regulatory framework
Course outline:	 Joint Operation Agreements as contractual arrangement within a consortium of companies Drilling Contracts and related agreements for oil and gas subsurface activities Engineering Procurement and Construction Contracts as main legal feature of oil and gas surface activities Transportation and Processing Agreements upstream Third party access and regulation in the midstream part of the value chain Gas Sales Agreements and energy supply contracts
Course assignments/ form of examination:	Homework assignments/ Written (90 min) or oral exam (30-40 min). At least 50% of maximal score number is required to pass the written exam.
Media:	 Multimedia lecturing tools PowerPoint presentation software and white board Hard copy of lecture notes to be provided at the beginning of the course A soft pdf copy of PowerPoint presentation available with the Stud.IP course directory Video records of lectures available with the Stud.IP course directory
Literature:	 Armour, John, Hansmann, Henry, Kraakman, Reinier, The Essential Elements of Corporate Law: What is Corporate Law?, in: Harvard Law School, Discussion Papers no. 643, 7/2009 Allen & Overy, Basic Principles of English Cotract Law, prepared for Advocates for Development, 2016 Pieck, Manfred, A Study of the Significant Aspect of German Cotract Law, in: Annual Survey of International & Comparative Law 3 (1996) 111 et seq. Respective internationally relevant Model Agreements and Contracts that are provided in the Stud.IP Respective texts of relevant laws and related documents that are provided in the Stud.IP
Additional information:	Participants are requested to register for the attendance with the course directory at the Stud.IP

Module 19.2: Materials Engineering

Degree Programme:	Petroleum Engineering (M.Sc.)
Module number:	19.2
Name of the module:	Materials Engineering
Courses:	Materials Engineering and Corrosion
Term:	2
Person responsible for the	Prof. Oppelt
module:	
Lecturers:	Prof. Neubert
Language:	English
Course type:	Compulsory optional subjects (WPF) of Drilling & Production area of study

		Workload [h]		Skills			
Courses	HPW	Contact hours/Self-study	СР	FK	MK	SK	SOK
S 6117 Materials Engineering and Corrosion	2V	28/62	3	60	40	0	0

Prerequisites for	No special prerequisites						
attending:							
Learning objectives /	Ability to employ appropriate materials and to design petroleum equipment and						
Skills:	facilities						
Course outline:	Petroleum Fluids & Corrosion (Oil, Gas, Water, Emulsions, Corrosion						
	Mechanism/Forms);						
	Materials and corrosion						
	Materials selection						
	Corrosion inhibition						
	Hydrogen corrosion						
	 Petroleum fluid and corrosion testing 						
	Cathodic corrosion protection						
	Other protection methods						
Course assignments/ form	Homework assignments/ Written (90 min) or oral exam (30-40 min). At least 50%						
of examination:	of maximal score number is required to pass the written exam.						
Media:	Multimedia lecturing tools						
	 PowerPoint presentation software and white board 						
	Hard copy of lecture notes to be provided at the beginning of the course						
	 A soft pdf copy of PowerPoint presentation available with the Stud.IP course 						
	directory						
Literature:	Authentic lecturing materials and handouts						
Additional information:	Participants are requested to register for the attendance with the course directory						
	at the Stud.IP						

Module 19.3: Fluid Mechanics

Degree Programme:	Petroleum Engineering (M.Sc.)
Module number:	19.3
Name of the module:	Fluid Mechanics
Courses:	Fluid Mechanics
Term:	1/3
Person responsible for the	Prof. Brenner
module:	
Lecturers:	Prof. Brenner
Language:	English
Course type:	Compulsory optional subjects (WPF) of Drilling & Production area of study

		Workload [h]	Skills				
Courses	HPW	Contact hours/Self-study	СР	FK	MK	SK	SOK
W 8040 Fluid Mechanics	2V	28/62	3	60	40	0	0

Prerequisites for	No special prerequisites					
attending:						
Learning objectives /	Comprehension of principles of mathematical modeling and experimental					
Skills:	techniques to describe and to investigate fluid flow processes					
Course outline:	 Properties of fluids and flows 					
	 Hydrostatics, aerostatics 					
	 Kinematics and dynamics of inviscid fluids -> Bernoulli equation 					
	• Conservation equations of viscous fluids the Euler Equation and applications to laminar flow					
	Conservation equations of viscous fluids the Navier- Stokes equation and applications to laminar flows					
	Dimensional analysis					
	Boundary layer theory					
	Turbulent flows					
	 Experimental and measurement techniques 					
Course assignments/ form	Homework assignments/ Written (90 min) or oral exam (30-40 min). At least 50%					
of examination:	of maximal score number is required to pass the written exam.					
Media:	Multimedia lecturing tools					
	 PowerPoint presentation software and white board 					
	 Hard copy of lecture notes to be provided at the beginning of the course 					
	A soft pdf copy of PowerPoint presentation available with the Stud.IP course					
	directory					
Literature:	Authentic lecturing materials and handouts					
Additional information:	Participants are requested to register for the attendance with the course directory					
	at the Stud.IP					

Module 19.4: Offshore Production and Structures

Degree Programme:	Petroleum Engineering (M.Sc.)
Module number:	19.4
Name of the module:	Offshore Production and Structures
Courses:	Offshore Production and Structures
Term:	1/3
Person responsible for the	Prof. Oppelt
module:	
Lecturers:	Prof. Reichetseder
Language:	English
Course type:	Compulsory optional subjects (WPF) of Drilling & Production area of study

Courses	HPW	Workload [h] Contact hours/Self-study	СР	FK	s MK	Skills SK	SOK
W 6124 Offshore Production and Structures	2V	28/62	3	60	40	0	0

Prerequisites for attending:	No special prerequisites
Learning objectives / Skills:	Comprehension of principles and methods to evaluate and to design of the offshore production systems/Students develop skills to develop concepts and to apply the principles of the evaluation and design the elements of the offshore production systems.
Course outline:	 International Offshore Activities and Trends Design Elements (Wind, Waves, Current, Ice Forces) Ocean Floor Surveying, Platform Foundation Design of Fixed Platform Systems (Piles, Gravity) Floating Systems Dry Tree (TLP, SPAR, etc) Floating Systems Wet Tree (FPSO, Semi, etc) Subsea Completions Logistics Offshore Pipelines Actual Development Projects and Case Studies Offshore Drilling overview: floating drilling units and special equipment, jack-ups, activities
Course assignments/ form of examination:	Homework assignments/ Written (90 min) or oral exam (30-40 min). At least 50% of maximal score number is required to pass the written exam.
Media:	 Multimedia lecturing tools PowerPoint presentation software and white board Hard copy of lecture notes to be provided at the beginning of the course A soft pdf copy of PowerPoint presentation available with the Stud.IP course directory Video records of lectures available with the Stud.IP course directory
Literature:	 Clauss, G., Lehmann, E., Östergaard, C., Offshore Structures, Vol. I, Conceptual Design and Hydromechanics; Springer Verlag 1992 El-Reedy, M.A., Offshore Structures - Design, Construction and Maintenance; Elsevier, 2012 Barltrop, N.D.P. (ed.), Floating Structures: a guide for design and analysis, Vol. I and II; Oilfield Publications Itd. 1998 Offshore-Magazin, http://www.offshore-mag.com
Additional information:	Participants are requested to register for the attendance with the course directory at the Stud.IP

Module 19.5: Numerical Reservoir Simulation

Degree Programme:	Petroleum Engineering
Module number:	19.5
Name of the module:	Numerical Reservoir Simulation
Courses:	Numerical Reservoir Simulation
Term:	2
Person responsible for the	Prof. Ganzer
module:	
Lecturers:	Prof. Ganzer, Prof. Bremeier,
Language:	English
Course type:	Compulsory optional subjects (WPF) of Drilling & Production area of study

		Workload [h]			Skills		
Courses	HPW	Contact hours/Self-study	CP	FK	MK	SK	SOK
S 6102 Numerical Reservoir Simulation	2V+1Ü	42/108	5	50	30	20	

Prerequisites for attending:	No special prerequisites
Learning objectives / Skills:	Acquisition of advanced knowledge in the field of setting up of dynamic reservoir simulation models, evaluation of model uncertainties, calibration of flow models, evaluation of forecasting accuracy. / Ability of setting up and evaluate dynamic reservoir simulation models as well as to approach the professional solution of real reservoir modelling and simulation problems on advanced methodical and systematical way.
Course outline:	 History and classification of reservoir simulators; Review of fluid properties for simulation - black-oil properties, equation of state; modeling rock properties and saturation functions - porosity, permeability, compressibility, relative permeability, capillary pressure, compaction, correlations; general purpose formulation and discretization methods used for black-oil and EOS compositional simulators; Gridding: structured and unstructured gridding approaches, Cartesian grids, corner point grids, Voronoi grids; Modelling structural elements in simulation - vertical and sloping faults, channels, etc.; Representing wells in the reservoir simulation model; Compositional reservoir simulation; Simulation of fractured reservoirs - numerical model, matrix-fracture exchange, recovery processes; Upgridding and upscaling;
Course assignments/ form of examination:	History matching Project work Assignments/ Written (90 min) or oral exam (30-40 min). 50% of maximal score number is required to pass the written exam.
Media:	 Multimedia lecturing tools Computer aided exercises using the application of the commercial reservoir simulation software Matlab and CMG. Hard copy of lecture notes to be provided at the beginning of the course. Video records of lecture available with the Stud.IP directory of the course. A soft pdf copy of PowerPoint presentation slides to be provided on the Stud.IP directory of the course.
Literature:	 Aziz, K., Settari, A.: Petroleum Reservoir Simulation, Elsevier Applied Science Publishers, 1979. Mattax, C.C., Dalton, R.L.: Reservoir Simulation, SPE Monograph Vol. 13, 1989. Ertekin, T., Abou-Kassem, King, G. R.: Basic Applied Reservoir Simulation, SPE Textbook Vol. 7, 2001.
Additional information:	Participants are requested to register for the attendance with the course directory at the Stud.IP

Module 19.6: Natural Gas Storage

Degree Programme:	Petroleum Engineering (M.Sc.)
Module number:	19.6
Name of the module:	Natural Gas Storage
Courses:	Natural Gas Storage
Term:	2
Person responsible for the	Prof. Ganzer
module:	
Lecturers:	Dr. Reitenbach
Language:	English
Course type:	Compulsory optional subjects (WPF) of Drilling & Production area of study

		Workload [h]			5	Skills	
Courses	HPW	Contact hours/Self-study	СР	FK	MK	SK	SOK
S 6113 Natural Gas Storage	2V	28/78	4	60	40		

Prerequisites for	No special prerequisites
attending: Learning objectives / Skills:	Acquisition of advanced knowledge in principles of analysis, application of material laws and fundamentals of phase behavior of hydrocarbons and engineering of natural gas storage processes
Course outline:	 Media for storage and operation principles; Fundamentals and definition of terms; Gas storage in salt caverns: geological, geomechanical and thermodynamic conditions and design of caverns; Operation Fundamentals; Characteristics and optimization strategies; Gas reservoirs: reservoir mechanics, storage capacity and productivity, gas mixing; Well design and completion, surface installations; Aquifer storages; Field cases.
Course assignments/ form of examination:	Module exam. Written (90 min) or oral exam (30-40 min). 50% of maximal score number is required to pass the written exam.
Media:	 PowerPoint presentation software and white board Hard copy of lecture notes will be provided at the beginning of the course. A soft pdf copy of PowerPoint presentation slides will be provided on the Stud.IP directory of the course. Authentic report materials and handouts
Literature:	 Flanigan, O.: Underground Storage Facilities. Design and Implementation. Gulf Publishing Company, 1995. Tek, R. M.: Natural Gas Underground Storage: Inventory and Deliverability. PennWell Publishing Company. 1996.
Additional information:	Participants are requested to register for the attendance with the course directory at the Stud.IP

Module 19.7: Geological Modeling

Degree Programme:	Petroleum Engineering
Module number:	19.7
Name of the module:	Geological Modeling
Courses:	Geological Modeling
Term:	1/3
Person responsible for the	Prof. Ganzer
module:	
Lecturers:	Prof. Groß, DiplIng. Schatzmann
Language:	English
Course type:	Compulsory optional subjects (WPF) of Drilling & Production area of study

		Workload [h]			Ski	lls	
Courses	HPW	Contact hours/Self-study	СР	FK	MK	SK	SOK
W 4820 Geological Modeling	2V+1Ü	42/108	5	50	30	20	

Prerequisites for attending:	No special prerequisites
Learning objectives / Skills:	Acquisition of advanced knowledge in the field of setting up of geological models / Ability of setting up and evaluate geological models on advanced methodical and systematical way.
Course outline:	 <u>Geological Modelling:</u> a) Theoretical part: Interpretation and basics to reconstruct deposition areas (depositional systems and facies models) with regards to set up 3D geological models: Principles of generation of 3-D geological models Sedimentary facies Facial model Facial sequences and stratigraphy, Sedimentary structures, Well logging and facies Depositional environments: Terrestrial environments; Fluvial systems Marginal marines: Deltaic systems Example cases relevant to the petroleum geology b) Practical part: Introduction to Petrel software package (well correlation, static
Course assignments/ form of examination:	geological model) Continuous assessment and report/ Written (90 min) or oral exam (30-40 min). The mark consists of a) theoretical part -> final exam (written) and b) practical part -> continuous assessment and report
Media:	 Multimedia lecturing tools PowerPoint presentation software and white board Computer aided exercises using the application of the commercial reservoir modeling software PETREL (Schlumberger) Hard copy of lecture notes to be provided at the beginning of the course. A soft pdf copy of PowerPoint presentation slides to be provided on the Stud.IP directory of the course.
Literature:	 Magoon, L.B., Dow, W.G.: The Petroleum System. In: Magoon, L.B., Dow, W.G. (eds.) The Petroleum System – from Source to Trap, AAPG Memoir 60, 1994. Nicols, G: Sedimentology and Stratigraphy, 2nd Edition, Wiley-Blackwell, 2009. Slatt, G.: Stratigraphic Reservoir Characterization for Petroleum Geologists, Geophysicists, and Engineers, Volume 61, 2nd Edition, Elsevier, 2013.
Additional information:	Participants are requested to register for the attendance with the course directory at the Stud.IP

Module 19.8: Applied Well Test Analysis

Degree Programme:	Petroleum Engineering
Module number:	19.8
Name of the module:	Applied Well Test Analysis
Courses:	Applied Well Test Analysis
Term:	2
Person responsible for the	Prof. Ganzer
module:	
Lecturers:	Prof. Ostrowski
Language:	English
Course type:	Compulsory optional subjects (WPF) of Drilling & Production area of study

		Workload [h]			Ski	lls	
Courses	HPW	Contact hours/Self-study	СР	FK	MK	SK	SOK
S 6109 Applied Well Test Analysis	2V+1Ü	42/108	5	60	40		

Prerequisites for attending:	No special prerequisites
Learning objectives / Skills:	The MSc candidates should acquire the knowledge in the origination, validation, interpretation and uncertainty of engineering and geo-scientific data as well as the ability to handle, to interpolate and to extrapolate it/ The students develop skills to acquire and to evaluate data required for reservoir characterization and simulation studies.
Course outline:	 Objectives of Well Testing Downhole and Surface Equipment Well Test Principles, Reservoir Models, Inner & Outer Boundary Conditions Single Well Test Analysis: Drawdown, Build-Up (DST) Pulse Test, Minifrac Testing, Layered Reservoir, Vertical Interference and Horizontal Well Test Multiple Well Test Analyses: Interference Test, Pulse Interference Test; Gas Well Test Analysis Interpretation Methodology.
Course assignments/ form of examination:	Module exam. Written (90 min) or oral exam (30-40 min). At least 50% of maximal score number is required to pass the written exam.
Media:	 Multimedia lecturing tools PowerPoint presentation software and white board Hard copy of lecture notes to be provided at the beginning of the course A soft pdf copy of PowerPoint presentation with the Stud.IP directory Computer aided exercises by using professional well test analysis and interpretation software
Literature:	 Slider, H. C.: A Simplified Method of Pressure Buildup Analysis for a Stabilized Well, Trans., AIME, 1971 Earlougher R. C.: Advances in Well Test Analysis, Monograph Series, SPE, Dallas 1977 Horner, D. R.: Pressure Analysis Methods, Reprint Series, SPE, Dallas 1967 Lee, J.: Well Testing, SPE of AIME, New York 1982 Matthews, C. S. & Russel, D. G.: Pressure Buildup and Flow Tests in Wells, Monograph Series, SPE, Dallas 1967 Ramey, H. J. Jr.: Practical Use of Modern Well Test Analysis, Paper 5878, New Orleans 1976
Additional information:	Participants are requested to register for the attendance with the course directory at the Stud.IP

Module 19.9: Enhanced Oil Recovery

Degree Programme:	Petroleum Engineering
Module number:	19.9
Name of the module:	Enhanced Oil Recovery
Courses:	Enhanced Oil Recovery
Term:	1/3
Person responsible for the	Prof. Ganzer
module:	
Lecturers:	Prof. Ganzer
Language:	English
Course type:	Compulsory optional subjects (WPF) of Drilling & Production area of study

Courses	HPW	Workload [h] Contact hours/Self- study	CP FK MK S		lls SK	ѕок	
W 6103 Enhanced Oil Recovery	2V+1Ü	42/108	5	60	40		

Prerequisites for attending:	No special prerequisites
Learning objectives / Skills:	Acquisition of advanced knowledge in the analysis and computation methods of the processes and mechanisms of the oil recovery, production and storage/ Skills in the application of the fundamentals of material and phase behavior of hydrocarbons will be consolidated and established on an advanced level
Course outline:	 Basics of Waterflooding; Chemical Flooding; Gas Flooding; Steam Flooding; Well Treatment
Course assignments/ form	Module exam. Written (90 min) or oral exam (30-40 min). At least 50% of maximal
of examination:	score number is required to pass the written exam.
Media:	Multimedia lecturing tools
	 PowerPoint presentation software and white board
	 Hard copy of lecture notes to be provided at the beginning of the course
	 A soft pdf copy of PowerPoint presentation with the Stud.IP directory
	 Computer aided exercises by using professional software
Literature:	 Lake, L.W.: "Enhanced Oil Recovery", SPE, 2010 Green, D.W. & Willhite, G.P.: "Enhanced Oil Recovery", SPE Textbook Series, 1998.
	3. Sheng, J.J.: "Modern Chemical Enhanced Oil Recovery", Elsevier, 2011.
	4. Van Pollen, H. K.: "Fundamentals of Enhanced Oil Recovery", Penn Well
	Publishing Company, Oklahoma, 1980
	5. M. Latil: "Enhanced Oil Recovery", Gulf Publishing Company, 1980.
	6. Dowed, T.: "Improved Oil Recovery", Interstate Oil Compact Commission, Oklahoma city, Oklahoma, (1983).
Additional information:	Participants are requested to register for the attendance with the course directory at the Stud.IP

Module 19.10: Geoinformation Systems

Degree Programme:	Petroleum Engineering (M.Sc.)
Module number:	19.10
Name of the module:	Geoinformation Systems
Courses:	Geoinformation Systems
Term:	1
Person responsible for the	Prof. Ganzer
module:	
Lecturers:	Prof. Busch
Language:	English
Course type:	Compulsory optional subjects (WPF) of Reservoir Management area of study

		Workload [h]			Skil	ls	
Courses	HPW	Contact hours/Self-study	СР	FK	MK	SK	SOK
W 6340 Geoinformation Systems	2V+1Ü	42/108	5	60	40		

Prerequisites for	No special prerequisites
attending: Learning objectives / Skills:	Acquisition of advanced knowledge in the principles of the Geo-data visualization and special application of the GIS in the oil and gas industry.
Course outline:	 Introduction GIS, what is it?; Definitions; Purpose of GIS; Solving a Problem using GIS; Special Applications from Oil and GAS Industries; Software packages Historical development Geo-data visualization, Maps; Maps and measurements; Computerization and GIS-technology Geographic Information and Spatial Data Real World Representation; Spatial phenomena; Spatial representation; Topology Time aspects; Spatial data structures; Data types; Reference frames Data capture Data input; Data preparation; Data quality GIS Functionality Basic maintenance functions; Operation types; Thematic data treatment; Spatial data analyses; Data transformation; Proximity operations; Advanced combined functions; Procedures in integrated Data Analyses Visualization (and Mapping)
Course assignments/ form of examination:	Module exam. Written (90 min) or oral exam (30-40 min).
Media:	 Multimedia lecturing tools Hard copy of lecture notes to be provided at the beginning of the course. Video records of lecture available with the Stud.IP directory of the course. A soft pdf copy of PowerPoint presentation slides to be provided on the Stud.IP directory of the course. Exercises with application of the GIS software
Literature:	 Graeme F. Bonham-Carter: Geographic Information Systems for Geoscientists: Modelling with GIS. Nicholas Chrisman: Exploring geographic information systems. de Buy et al.: Principles of Geographic Information Systems. Tor Bernhardsen: Geographical Information Systems. David J. Unwin, David O'Sullivan: Geographic Information Analysis. Michael N. DeMers: Fundamentals of Geographic Information Systems. Laurie Kelly, Michael F. Worboys, Matt Duckham. GIS. A computing perspective. Robert Laurini, Derek Thompson: Fundamentals of spatial information systems. David J. Maguire, Michael F. Goodchild, David W. Rhind: Geographical Information Systems.
Additional information:	Participants are requested to register for the attendance with the course directory at the Stud.IP

Compulsory optional subjects of Deep Geothermal Systems area of study

Module 20.1: Energy Law

Degree Programme:	Petroleum Engineering (M.Sc.)
Module number:	20.1
Name of the module:	Energy Law
Courses:	Energy Law II
Term:	1/3
Person responsible for the	Prof. Oppelt
module:	
Lecturers:	Prof. Wolkewitz
Language:	English
Course type:	Compulsory optional subjects (WPF) of Deep Geothermal Systems area of study

		Workload [h]	Skills				
Courses	HPW	Contact hours/Self-study	СР	FK	MK	SK	SOK
W 6115 Energy Law II	2V	28/62	3	60	40	0	0

Prerequisites for attending:	No special prerequisites
Learning objectives / Skills:	Knowledge about the main contractual arrangements necessary along the value chain of oil and gas activities including the relevant regulatory framework
Course outline:	 Joint Operation Agreements as contractual arrangement within a consortium of companies Drilling Contracts and related agreements for oil and gas subsurface activities Engineering Procurement and Construction Contracts as main legal feature of oil and gas surface activities Transportation and Processing Agreements upstream Third party access and regulation in the midstream part of the value chain
	Gas Sales Agreements and energy supply contracts
Course assignments/ form of examination:	Homework assignments/ Written (90 min) or oral exam (30-40 min). At least 50% of maximal score number is required to pass the written exam.
Media:	 Multimedia lecturing tools PowerPoint presentation software and white board Hard copy of lecture notes to be provided at the beginning of the course A soft pdf copy of PowerPoint presentation available with the Stud.IP course directory Video records of lectures available with the Stud.IP course directory
Literature:	 Armour, John, Hansmann, Henry, Kraakman, Reinier, The Essential Elements of Corporate Law: What is Corporate Law?, in: Harvard Law School, Discussion Papers no. 643, 7/2009 Allen & Overy, Basic Principles of English Cotract Law, prepared for Advocates for Development, 2016 Pieck, Manfred, A Study of the Significant Aspect of German Cotract Law, in: Annual Survey of International & Comparative Law 3 (1996) 111 et seq. Respective internationally relevant Model Agreements and Contracts that are provided in the Stud.IP Respective texts of relevant laws and related documents that are provided in the Stud.IP
Additional information:	Participants are requested to register for the attendance with the course directory at the Stud.IP

Module 20.2: Fluid Mechanics

Degree Programme:	Petroleum Engineering (M.Sc.)
Module number:	20.3
Name of the module:	Fluid Mechanics
Courses:	Fluid Mechanics
Term:	1/3
Person responsible for the	Prof. Brenner
module:	
Lecturers:	Prof. Brenner
Language:	English
Course type:	Compulsory optional subjects (WPF) of Deep Geothermal Systems area of study

		Workload [h]			5	kills	
Courses	HPW	Contact hours/Self-study	СР	FK	MK	SK	SOK
W 8040 Fluid Mechanics	2V	28/62	3	60	40	0	0

Prerequisites for	No special prerequisites			
attending:				
Learning objectives /	Comprehension of principles of mathematical modeling and experimental			
Skills:	techniques to describe and to investigate fluid flow processes			
Course outline:	 Properties of fluids and flows 			
	Hydrostatics, aerostatics			
	 Kinematics and dynamics of inviscid fluids –> Bernoulli equation 			
	 Conservation equations of viscous fluids the Euler Equation and applications to laminar flow 			
	Conservation equations of viscous fluids the Navier- Stokes equation and applications to laminar flows			
	Dimensional analysis			
	Boundary layer theory			
	Turbulent flows			
	 Experimental and measurement techniques 			
Course assignments/ form	Homework assignments/ Written (90 min) or oral exam (30-40 min). At least 50%			
of examination:	of maximal score number is required to pass the written exam.			
Media:	Multimedia lecturing tools			
	 PowerPoint presentation software and white board 			
	 Hard copy of lecture notes to be provided at the beginning of the course 			
	A soft pdf copy of PowerPoint presentation available with the Stud.IP course			
	directory			
Literature:	Authentic lecturing materials and handouts			
Additional information:	Participants are requested to register for the attendance with the course directory			
	at the Stud.IP			

Module 20.3: Numerical Reservoir Simulation

Degree Programme:	Petroleum Engineering
Module number:	20.3
Name of the module:	Numerical Reservoir Simulation
Courses:	Numerical Reservoir Simulation
Term:	2
Person responsible for the	Prof. Ganzer
module:	
Lecturers:	Prof. Ganzer, Prof. Bremeier,
Language:	English
Course type:	Compulsory optional subjects (WPF) of Deep Geothermal Systems area of study

		Workload [h]			Skil	ls	
Courses	HPW	Contact hours/Self-study	СР	FK	MK	SK	SOK
S 6102 Numerical Reservoir Simulation	2V+1Ü	42/108	5	50	30	20	

Prerequisites for attending:	No special prerequisites
Learning objectives / Skills:	Acquisition of advanced knowledge in the field of setting up of dynamic reservoir simulation models, evaluation of model uncertainties, calibration of flow models, evaluation of forecasting accuracy. / Ability of setting up and evaluate dynamic reservoir simulation models as well as to approach the professional solution of real reservoir modelling and simulation problems on advanced methodical and systematical way.
Course outline:	 History and classification of reservoir simulators; Review of fluid properties for simulation - black-oil properties, equation of state; modeling rock properties and saturation functions - porosity, permeability, compressibility, relative permeability, capillary pressure, compaction, correlations; general purpose formulation and discretization methods used for black-oil and EOS compositional simulators; Gridding: structured and unstructured gridding approaches, Cartesian grids, corner point grids, Voronoi grids; Modelling structural elements in simulation - vertical and sloping faults, channels, etc.; Representing wells in the reservoir simulation model; Compositional reservoir simulation; Simulation of fractured reservoirs - numerical model, matrix-fracture exchange, recovery processes; Upgridding and upscaling;
Course assignments/ form	 History matching Project work Assignments/ Written (90 min) or oral exam (30-40 min). 50% of
of examination:	maximal score number is required to pass the written exam.
Media:	 Multimedia lecturing tools Computer aided exercises using the application of the commercial reservoir simulation software Matlab and CMG. Hard copy of lecture notes to be provided at the beginning of the course. Video records of lecture available with the Stud.IP directory of the course. A soft pdf copy of PowerPoint presentation slides to be provided on the Stud.IP directory of the course.
Literature:	 Aziz, K., Settari, A.: Petroleum Reservoir Simulation, Elsevier Applied Science Publishers, 1979. Mattax, C.C., Dalton, R.L.: Reservoir Simulation, SPE Monograph Vol. 13, 1989. Ertekin, T., Abou-Kassem, King, G. R.: Basic Applied Reservoir Simulation, SPE Textbook Vol. 7, 2001.
Additional information:	Participants are requested to register for the attendance with the course directory at the Stud.IP

Module 20.4: Geological Modeling

Degree Programme:	Petroleum Engineering
Module number:	20.4
Name of the module:	Geological Modeling
Courses:	Geological Modeling
Term:	1/3
Person responsible for the	Prof. Ganzer
module:	
Lecturers:	Prof. Groß, DiplIng. Schatzmann
Language:	English
Course type:	Compulsory optional subjects (WPF) of Deep Geothermal Systems area of study

		Workload [h]			Ski	lls	
Courses	HPW	Contact hours/Self-study	СР	FK	MK	SK	SOK
W 4820 Geological Modeling	2V+1Ü	42/108	5	50	30	20	

Prerequisites for attending:	No special prerequisites
Learning objectives / Skills:	Acquisition of advanced knowledge in the field of setting up of geological models / Ability of setting up and evaluate geological models on advanced methodical and systematical way.
Course outline:	 <u>Geological Modelling:</u> a) Theoretical part: Interpretation and basics to reconstruct deposition areas (depositional systems and facies models) with regards to set up 3D geological models: Principles of generation of 3-D geological models Sedimentary facies Facial model Facial sequences and stratigraphy, Sedimentary structures, Well logging and facies Depositional environments: Terrestrial environments; Fluvial systems Marginal marines: Deltaic systems Example cases relevant to the petroleum geology b) Practical part: Introduction to Petrel software package (well correlation, static
	geological model)
Course assignments/ form of examination:	Continuous assessment and report/ Written (90 min) or oral exam (30-40 min). The mark consists of a) theoretical part -> final exam (written) and b) practical part -> continuous assessment and report
Media:	 Multimedia lecturing tools PowerPoint presentation software and white board Computer aided exercises using the application of the commercial reservoir modeling software PETREL (Schlumberger) Hard copy of lecture notes to be provided at the beginning of the course. A soft pdf copy of PowerPoint presentation slides to be provided on the Stud.IP directory of the course.
Literature:	 Magoon, L.B., Dow, W.G.: The Petroleum System. In: Magoon, L.B., Dow, W.G. (eds.) The Petroleum System – from Source to Trap, AAPG Memoir 60, 1994. Nicols, G: Sedimentology and Stratigraphy, 2nd Edition, Wiley-Blackwell, 2009. Slatt, G.: Stratigraphic Reservoir Characterization for Petroleum Geologists, Geophysicists, and Engineers, Volume 61, 2nd Edition, Elsevier, 2013.
Additional information:	Participants are requested to register for the attendance with the course directory at the Stud.IP

Module 20.5: Hydrogeology for the Geothermal Energy Production

Degree Programme:	Petroleum Engineering				
Module number:	20.5				
Name of the module:	lydrogeology for the Geothermal Energy Production				
Courses:	Hydrogeology for the Geothermal Energy Production				
Term:	2				
Person responsible for the	Prof. Ganzer				
module:					
Lecturers:	Dr. C. Hansen				
Language:	English				
Course type:	Compulsory optional subjects (WPF) of Deep Geothermal Systems area of study				

		Workload [h]			Ski	ills	
Courses	HPW	Contact hours/Self-study	СР	FK	MK	SK	SOK
S 6145 Hydrogeology for the Geothermal Energy Production	1V+1Ü	28/92	3	60	30		10

Prerequisites for attending:	No special prerequisites
Learning objectives /	Accuration of the substance in budgets and relations to also in the development and
Skills:	Acquisition of knowledge in hydrological relevant tasks in the development and
	processes of geothermal reservoirs
Course outline:	 Introduction to hydrogeology and water cycle,
	• Hydrological rock properties, water flow in porous and fractures aquifers,
	• Darcy's law and groundwater flow equation, groundwater modelling with MODFLOW,
	• Introduction to hydrochemistry, water composition: major, minor and trace
	 elements, Sampling techniques, application of tracer, water pollutants,
	Hydro-chemical characterisation of groundwater levels,
	• Thermodynamic fundamentals for hydro-geochemical modelling, training on
	the software PHREEQC, solubility of minerals, scaling in geothermal facilities,
	thermodynamic databases, introduction of the software PHAST.
Course assignments/ form	Written (90 min) or oral exam (30-40 min).
of examination:	
Media:	Multimedia lecturing tools
	 PowerPoint presentation software and white board
	Hard copy of lecture notes to be provided at the beginning of the course.
	• A soft pdf copy of PowerPoint presentation slides to be provided on the Stud.IP
	directory of the course.
Literature:	1. Fetter, C.W. (2001): Applied Hydrogeology
	2. Kresic, N. (1997): Quantitative solutions in hydrogeology and groundwater
	modeling
	3. Stumm, W., Morgan, J.J. (1981): Aquatic chemistry – an
	introduction emphasizing chemical equilibria in natural waters
Additional information:	Participants are requested to register for the attendance with the course directory
	at the Stud.IP

Module 20.6: Geothermal Geology

Degree Programme:	Petroleum Engineering
Module number:	20.6
Name of the module:	Geothermal Geology
Courses:	Geothermal Geology
Term:	1-3
Person responsible for the	Prof. Ganzer
module:	
Lecturers:	Dr. M. Dussel
Language:	English
Course type:	Compulsory optional subjects (WPF) of Deep Geothermal Systems area of study

		Workload [h] Skills		lls	-		
Courses	HPW	Contact hours/Self-study	СР	FK	MK	SK	SOK
W 4660 Geothermal Geology	1V+1Ü	28/92	4	60	35		5

Prerequisites for attending:	No special prerequisites
Learning objectives / Skills:	A clear understanding of the different types of geothermal resources, how they can be found and in which geological settings.
Course outline:	 Description of a comprehensive range of Geothermal Play Types in terms of generic conceptual models of geological and tectonic settings in which geothermal systems might naturally develop or be engineered around the world. Terminology and definitions for a classification framework for Geothermal Potential (resource/reserve).
Course assignments/ form of examination:	Written (90 min) or oral exam (30-40 min).
Media:	 Multimedia lecturing tools PowerPoint presentation software and white board Hard copy of lecture notes to be provided at the beginning of the course. A soft pdf copy of PowerPoint presentation slides to be provided on the Stud.IP directory of the course.
Literature:	 IGA Geothermal Conference Paper Database: http://www.geothermal- energy.org/publications_and_services/conference_paper_database.html Geothermal Energy (a Springer Open Journal) Database: http://www.geothermal-energy-journal.com/
Additional information:	Participants are requested to register for the attendance with the course directory at the Stud.IP

Module 20.7: Fossil & Renewable Energy

Degree Programme:	Petroleum Engineering
Module number:	20.7
Name of the module:	Fossil & Renewable Energy
Courses:	Fossil & Renewable Energy
Term:	1-3
Person responsible for the	Prof. Ganzer
module:	
Lecturers:	Dr. Buddenberg
Language:	English
Course type:	Compulsory optional subjects (WPF) of Deep Geothermal Systems area of study

Courses	HPW	Workload [h] Contact hours/Self-study	СР	FK	Ski MK	lls SK	SOK
W 8831 Fossil & Renewable Energy	2V+1Ü	42/108	5	60	35		5

Prerequisites for	No special prerequisites			
attending:				
Learning objectives /	A clear understanding of the different types of fossil and renewable			
Skills:	resources, how they can be found and in which geological settings.			
Course outline:	Basics of energy: definitions physical, technical and economic fundamentals			
	 Fossil (and nuclear) Resources 			
	Renewable Resources			
	Energy scenarios			
Course assignments/ form	Written (90 min) or oral exam (30-40 min).			
of examination:				
Media:	Multimedia lecturing tools			
	 PowerPoint presentation software and white board 			
	 Hard copy of lecture notes to be provided at the beginning of the course. 			
	• A soft pdf copy of PowerPoint presentation slides to be provided on the Stud.IP			
	directory of the course.			
Literature:				
Additional information:	Participants are requested to register for the attendance with the course directory			
	at the Stud.IP			

Module 20.8: Health, Safety and Environmental Management

Degree Programme:	Petroleum Engineering (M.Sc.)			
Module number:	20.8			
Name of the module:	Health, Safety and Environmental Management			
Courses:	Health, Safety and Environmental Management			
Term:	3			
Person responsible for the	Prof. Oppelt			
module:				
Lecturers:	DiplIng. Söntgerath			
Language:	English			
Course type:	Compulsory optional subjects (WPF) of Deep Geothermal Systems area of study			

		Workload [h]		Skills				
Courses	HPW	Contact hours/Self-study	СР	FK	MK	SK	SOK	
W 6135 Health, Safety and Environmental Management	1V	14/46	2	25	25	25	25	

Prerequisites for attending:	No special prerequisites			
Learning objectives /	Acquisition of knowledge on impact of health safety and environment issues on oil			
Skills:	and gas activities and ways to deal with it.			
Course outline:	 Organisation of Safety and Loss Management 			
	Risk and its Management			
	 Machinery and Equipment Safety 			
	Kyoto Protocol and beyond			
	Clear Air for Europe (CAFE)			
	Dangerous Substances			
	Waste and water Management			
	Offshore Regulations			
	Audit - a new tool?			
	Biodiversity - who cares?			
Course assignments/ form	Homework assignments/ Written (90 min) or oral exam (30-40 min). At least 50%			
of examination:	of maximal score number is required to pass the written exam.			
Media:	Multimedia lecturing tools			
	PowerPoint presentation software and white board			
	Hard copy of lecture notes to be provided at the beginning of the course			
	A soft pdf copy of PowerPoint presentation available with the Stud.IP course			
	directory			
1.11	Video records of lectures available with the Stud.IP course directory			
Literature:	Lecture Notes			
	Handouts and authentic materials based on the EU and German national health,			
	environmental and occupational protection laws			
Additional information:	Participants are requested to register for the attendance with the course directory at the Stud.IP			

Module 20.9: Geoinformation Systems

Degree Programme:	Petroleum Engineering (M.Sc.)			
Module number:	20.9			
Name of the module:	Geoinformation Systems			
Courses:	Geoinformation Systems			
Term:	1			
Person responsible for the	Prof. Ganzer			
module:				
Lecturers:	Prof. Busch			
Language:	English			
Course type:	Compulsory optional subjects (WPF) of Deep Geothermal Systems area of study			

		Workload [h]		Skills			
Courses	HPW	Contact hours/Self-study	СР	FK	MK	SK	SOK
W 6340 Geoinformation Systems	2V+1Ü	42/108	5	60	40		

Prerequisites for attending:	No special prerequisites			
Learning objectives / Skills:	Acquisition of advanced knowledge in the principles of the Geo-data visualization and special application of the GIS in the oil and gas industry.			
Course outline:	 Introduction GIS, what is it?; Definitions; Purpose of GIS; Solving a Problem using GIS; Special Applications from Oil and GAS Industries; Software packages Historical development Geo-data visualization, Maps; Maps and measurements; Computerization and GIS-technology Geographic Information and Spatial Data Real World Representation; Spatial phenomena; Spatial representation; Topology Time aspects; Spatial data structures; Data types; Reference frames Data capture Data input; Data preparation; Data quality GIS Functionality Basic maintenance functions; Operation types; Thematic data treatment; Spatial data analyses; Data transformation; Proximity operations; Advanced combined functions; Procedures in integrated Data Analyses Visualization (and Mapping) 			
Course assignments/ form of examination:	Module exam. Written (90 min) or oral exam (30-40 min).			
Media:	 Multimedia lecturing tools Hard copy of lecture notes to be provided at the beginning of the course. Video records of lecture available with the Stud.IP directory of the course. A soft pdf copy of PowerPoint presentation slides to be provided on the Stud.IP directory of the course. Exercises with application of the GIS software 			
Literature:	 Graeme F. Bonham-Carter: Geographic Information Systems for Geoscientists: Modelling with GIS. Nicholas Chrisman: Exploring geographic information systems. De Buy et al.: Principles of Geographic Information Systems. Tor Bernhardsen: Geographical Information Systems. David J. Unwin, David O'Sullivan: Geographic Information Analysis. Michael N. DeMers: Fundamentals of Geographic Information Systems. Laurie Kelly, Michael F. Worboys, Matt Duckham. GIS. A computing perspective. Robert Laurini, Derek Thompson: Fundamentals of spatial information systems. David J. Maguire, Michael F. Goodchild, David W. Rhind: Geographical Information Systems. 			
Additional information:	Participants are requested to register for the attendance with the course directory at the Stud.IP			

List of Abbreviations

Workload units:

HPW Hours per week

CP ECTS Credit Point

Course type:

- (PF) Compulsory subject
- (WPF) Compulsory optional subject
- (WF) Elective (additional exam)

Teaching form:

- V Lecture
- Ü Exercise
- V + Ü Lecture and exercise
- P Practical training
- S Seminar

Type of Exam:

- (K) Written exam
- (M) Oral exam
- (Th) Term paper
- (Ab) Master thesis + Colloquium
- (SL) Seminar paper + Presentation

<u>Skills:</u>

- FK Professional skills
- MK Technical skills
- SK System expertise
- SOK Social skills