

Resource-efficient welding processes through numerical simulation and optimization

Jendrik-Alexander Tröger¹, Stefan Hartmann¹, Kai Treutler², Andreas Potschka³, Volker Wesling²

¹Institute of Applied Mechanics, TU Clausthal ²Institute of Welding and Machining, TU Clausthal ³Institute of Mathematics, TU Clausthal

Wire arc additive manufacturing

Model Calibration

Model calibration using non-linear least-squares method

- High deposition rates
- Small cooling rates
- High energy input
- Multi-material design

- Cooling times required to prevent overheating of the structure
 - Usually chosen based on experience
 - \rightarrow Lack of reproducibility
 - \rightarrow Unwanted part properties
 - \rightarrow Extended process time

- \rightarrow Provide a numerical tool for process parameter optimization
- \rightarrow Cooling time

problem

boundary value

→ Welding velocity

Optimization Problem

Transient heat conduction equation $\rho(\vec{x})c_{\rm p}(\Theta)\dot{\Theta}(\vec{x},t) = -\operatorname{div}\vec{q}(\vec{x},t) + r_{\Theta}(\vec{x},t)$

Experimental setup – three-layered vertical wall

Numerical model

- Symmetry in \vec{e}_3 -direction
- Goldak's double ellipsoidal heat source
- Ansatz for convection on free surfaces $h(\Theta) = c_1 \tanh(c_2 \Theta) + c_3$

Calibration result and uncertainty quantification

 \rightarrow 77 finite element simulations required during calibration

parameter	value \pm uncert.	dimension
c_1	318 ± 11	$\mathrm{Wm^{-2}K^{-1}}$
c_2	$2.6 \times 10^{-3} \pm 2 \times 10^{-4}$	$^{\circ}\mathrm{C}$
c_3	5.2 ± 0.6	${ m W}{ m m}^{-2}{ m K}^{-1}$

Constitutive equation (Fourier's model) $\vec{q}(\vec{x},t) = -\kappa(\Theta) \operatorname{grad} \Theta(\vec{x},t)$

Boundary and initial conditions

 $\Theta(\vec{x},t) = \overline{\Theta}(\vec{x},t)$ on $A^{\Theta}(t)$ $\vec{q}(\vec{x},t) \cdot \vec{n}(\vec{x}) = \hat{q}(\vec{x},t)$ on $A^{\mathrm{w}}(t)$ $\vec{q}(\vec{x},t) \cdot \vec{n}(\vec{x}) = \overline{q}(\Theta(\vec{x},t))$ on $A^{\rm q}(t)$ $\Theta(\vec{x}, t_0) = \Theta_0(\vec{x})$ at t_0

- nitial Convection and non-linear radiation $\overline{q}(\Theta) = h(\Theta) \left(\Theta - \Theta_{\infty}\right) + \sigma \epsilon(\Theta) \left(\Theta^4 - \Theta_{\infty}^4\right)$
 - \rightarrow Geometry evolves during the process

 \rightarrow Inactive element method (element activation \rightarrow non-smooth model response)

Goal: Minimize process time

S

Results

Process related inequality constraints

Welding velocity

Optimization

- $v_{\rm w}(t) \ge v_{\rm w,min},$ $v_{\rm w}(t) \leq v_{\rm w,max}$ II. Cooling time (process) $\Delta t_{\rm c} \ge 0$
- III. Cooling time (structure) $\Delta t_{8/5} \leq \Delta t_{8/5,\max}$

IV.Interlayer temperature $\Theta_{\rm int} \leq \Theta_{\rm int,max}$

 \rightarrow Gradient-free optimization using Nelder-Mead Simplex algorithm

Reference: Tröger, J.-A., Hartmann, S., Treutler, K., Potschka, A., Wesling, V.: Simulation-based process parameter optimization for wire arc additive manufacturing. Submitted to Progress in Additive Manufacturing

 \rightarrow Optimized parameters satisfy process- and material-related constraints

 \rightarrow Process time reduced by 48% compared to manually chosen parameters

Outlook

- Extension to variable arc voltage and arc current within optimization
- \rightarrow Control energy input during process
- Further development of modelling capabilities
- Heat source model
- Complex welding paths